Skip to main navigation menu Skip to main content Skip to site footer

Peer Reviewed Article

Vol. 11 (2024)

AI-Enhanced Reciprocal Symmetry in Nanoparticle-Thermoplastic Compounding: Towards a Digital Transformation in Materials Science

Submitted
28 July 2024
Published
15-02-2024

Abstract

This study explores the transformative potential of artificial intelligence (AI) in nanoparticle-thermoplastic compounding, focusing on enhancing reciprocal symmetry to achieve superior material properties. The principal objective is to investigate how AI algorithms can optimize nanoparticle dispersion within thermoplastic matrices, leading to improved performance and broader application potential. Utilizing a secondary data-based methodology, the research involves a comprehensive review and analysis of existing literature, including peer-reviewed journal articles, industry reports, and relevant case studies. Key findings highlight that AI significantly enhances predictive accuracy and optimization capabilities in nanocompounding. Machine learning and deep learning models accurately predict nanoparticle behavior, ensuring uniform dispersion and consistent material properties. Practical applications in the automotive, healthcare, and consumer electronics industries demonstrate tangible benefits, including improved material strength, biocompatibility, and thermal and electrical conductivity. AI-driven processes also contribute to sustainability by minimizing waste and reducing energy consumption. Technical implications underscore the role of AI in driving digital transformation within materials science. AI facilitates data-driven decision-making, automation, and innovation, leading to more efficient and accurate compounding processes. Future research should focus on integrating AI with IoT and smart manufacturing systems, developing more sophisticated algorithms, and promoting collaborative research and open data initiatives. This study concludes that AI-enhanced reciprocal symmetry in nanoparticle-thermoplastic compounding holds significant promise for advancing materials science and various industry applications.

References

  1. Addimulam, S., Mohammed, M. A., Karanam, R. K., Ying, D., Pydipalli, R., Patel, B., Shajahan, M. A., Dhameliya, N., & Natakam, V. M. (2020). Deep Learning-Enhanced Image Segmentation for Medical Diagnostics. Malaysian Journal of Medical and Biological Research, 7(2), 145-152. https://mjmbr.my/index.php/mjmbr/article/view/687
  2. Anumandla, S. K. R., & Tejani, J. G. (2023). Robotic Automation in Rubber Processing: Improving Safety and Productivity. Asian Journal of Applied Science and Engineering, 12(1), 7–15. https://doi.org/10.18034/ajase.v12i1.90
  3. Anumandla, S. K. R., Yarlagadda, V. K., Vennapusa, S. C. R., & Kothapalli, K. R. V. (2020). Unveiling the Influence of Artificial Intelligence on Resource Management and Sustainable Development: A Comprehensive Investigation. Technology & Management Review, 5, 45-65. https://upright.pub/index.php/tmr/article/view/145
  4. Khair, M. A., Tejani, J. G., Sandu, A. K., & Shajahan, M. A. (2020). Trade Policies and Entrepreneurial Initiatives: A Nexus for India’s Global Market Integration. American Journal of Trade and Policy, 7(3), 107–114. https://doi.org/10.18034/ajtp.v7i3.706
  5. Kothapalli, K. R. V., Tejani, J. G., Rajani Pydipalli, R. (2021). Artificial Intelligence for Microbial Rubber Modification: Bridging IT and Biotechnology. Journal of Fareast International University, 4(1), 7-16.
  6. Mohammed, M. A., Kothapalli, K. R. V., Mohammed, R., Pasam, P., Sachani, D. K., & Richardson, N. (2017). Machine Learning-Based Real-Time Fraud Detection in Financial Transactions. Asian Accounting and Auditing Advancement, 8(1), 67–76. https://4ajournal.com/article/view/93
  7. Mohammed, M. A., Mohammed, R., Pasam, P., & Addimulam, S. (2018). Robot-Assisted Quality Control in the United States Rubber Industry: Challenges and Opportunities. ABC Journal of Advanced Research, 7(2), 151-162. https://doi.org/10.18034/abcjar.v7i2.755
  8. Mohammed, R., Addimulam, S., Mohammed, M. A., Karanam, R. K., Maddula, S. S., Pasam, P., & Natakam, V. M. (2017). Optimizing Web Performance: Front End Development Strategies for the Aviation Sector. International Journal of Reciprocal Symmetry and Theoretical Physics, 4, 38-45. https://upright.pub/index.php/ijrstp/article/view/142
  9. Mullangi, K., Anumandla, S. K. R., Maddula, S. S., Vennapusa, S. C. R., & Mohammed, M. A. (2018). Accelerated Testing Methods for Ensuring Secure and Efficient Payment Processing Systems. ABC Research Alert, 6(3), 202–213. https://doi.org/10.18034/ra.v6i3.662
  10. Mullangi, K., Dhameliya, N., Anumandla, S. K. R., Yarlagadda, V. K., Sachani, D. K., Vennapusa, S. C. R., Maddula, S. S., & Patel, B. (2023). AI-Augmented Decision-Making in Management Using Quantum Networks. Asian Business Review, 13(2), 73–86. https://doi.org/10.18034/abr.v13i2.718
  11. Natakam, V. M. (2017). Optimizing Web Performance: Front End Development Strategies for the Aviation Sector. International Journal of Reciprocal Symmetry and Theoretical Physics, 4, 38-45. https://upright.pub/index.php/ijrstp/article/view/142
  12. Natakam, V. M., Nizamuddin, M., Tejani, J. G., Yarlagadda, V. K., Sachani, D. K., & Karanam, R. K. (2022). Impact of Global Trade Dynamics on the United States Rubber Industry. American Journal of Trade and Policy, 9(3), 131–140. https://doi.org/10.18034/ajtp.v9i3.716
  13. Nizamuddin, M., Natakam, V. M., Sachani, D. K., Vennapusa, S. C. R., Addimulam, S., & Mullangi, K. (2019). The Paradox of Retail Automation: How Self-Checkout Convenience Contrasts with Loyalty to Human Cashiers. Asian Journal of Humanity, Art and Literature, 6(2), 219-232. https://doi.org/10.18034/ajhal.v6i2.751
  14. Patel, B., Yarlagadda, V. K., Dhameliya, N., Mullangi, K., & Vennapusa, S. C. R. (2022). Advancements in 5G Technology: Enhancing Connectivity and Performance in Communication Engineering. Engineering International, 10(2), 117–130. https://doi.org/10.18034/ei.v10i2.715
  15. Pydipalli, R., & Tejani, J. G. (2019). A Comparative Study of Rubber Polymerization Methods: Vulcanization vs. Thermoplastic Processing. Technology & Management Review, 4, 36-48. https://upright.pub/index.php/tmr/article/view/132
  16. Pydipalli, R., Anumandla, S. K. R., Dhameliya, N., Thompson, C. R., Patel, B., Vennapusa, S. C. R., Sandu, A. K., & Shajahan, M. A. (2022). Reciprocal Symmetry and the Unified Theory of Elementary Particles: Bridging Quantum Mechanics and Relativity. International Journal of Reciprocal Symmetry and Theoretical Physics, 9, 1-9. https://upright.pub/index.php/ijrstp/article/view/138
  17. Roberts, C., Pydipalli, R., Tejani, J. G., & Nizamuddin, M. (2021). Green Chemistry Approaches to Vulcanization: Reducing Environmental Impact in Rubber Manufacturing. Asia Pacific Journal of Energy and Environment, 8(2), 67-76. https://doi.org/10.18034/apjee.v8i2.750
  18. Rodriguez, M., Tejani, J. G., Pydipalli, R., & Patel, B. (2018). Bioinformatics Algorithms for Molecular Docking: IT and Chemistry Synergy. Asia Pacific Journal of Energy and Environment, 5(2), 113-122. https://doi.org/10.18034/apjee.v5i2.742
  19. Sachani, D. K., Dhameliya, N., Mullangi, K., Anumandla, S. K. R., & Vennapusa, S. C. R. (2021). Enhancing Food Service Sales through AI and Automation in Convenience Store Kitchens. Global Disclosure of Economics and Business, 10(2), 105-116. https://doi.org/10.18034/gdeb.v10i2.754
  20. Sandu, A. K., Pydipalli, R., Tejani, J. G., Maddula, S. S., & Rodriguez, M. (2022). Cloud-Based Genomic Data Analysis: IT-enabled Solutions for Biotechnology Advancements. Engineering International, 10(2), 103–116. https://doi.org/10.18034/ei.v10i2.712
  21. Tejani, J. G. (2017). Thermoplastic Elastomers: Emerging Trends and Applications in Rubber Manufacturing. Global Disclosure of Economics and Business, 6(2), 133-144. https://doi.org/10.18034/gdeb.v6i2.737
  22. Tejani, J. G. (2019). Innovative Approaches to Recycling Rubber Waste in the United States. ABC Research Alert, 7(3), 181–192. https://doi.org/10.18034/ra.v7i3.660
  23. Tejani, J. G. (2020). Advancements in Sustainable Rubber Production: Bio-Based Alternatives and Recycling Technologies. ABC Journal of Advanced Research, 9(2), 141-152. https://doi.org/10.18034/abcjar.v9i2.749
  24. Tejani, J. G. (2023). The Influence of Crosslinking Agents on the Properties of Thermoplastic Elastomers. Silicon Valley Tech Review, 2(1), 1-12.
  25. Tejani, J. G., Khair, M. A., & Koehler, S. (2021). Emerging Trends in Rubber Additives for Enhanced Performance and Sustainability. Digitalization & Sustainability Review, 1(1), 57-70. https://upright.pub/index.php/dsr/article/view/130
  26. Tejani, J., Shah, R., Vaghela, H., Kukadiya, T., Pathan, A. A. (2018). Conditional Optimization of Displacement Synthesis for Pioneered ZnS Nanostructures. Journal of Nanotechnology & Advanced Materials, 6(1), 1-7. https://www.naturalspublishing.com/Article.asp?ArtcID=13193
  27. Ying, D., & Addimulam, S. (2022). Innovative Additives for Rubber: Improving Performance and Reducing Carbon Footprint. Asia Pacific Journal of Energy and Environment, 9(2), 81-88. https://doi.org/10.18034/apjee.v9i2.753

Similar Articles

11-20 of 26

You may also start an advanced similarity search for this article.