Skip to main navigation menu Skip to main content Skip to site footer

Peer Reviewed Article

Vol. 9 (2022)

Leveraging AI in SAP GTS for Enhanced Trade Compliance and Reciprocal Symmetry Analysis

Submitted
12 March 2022
Published
05-06-2022

Abstract

This research investigates how SAP Global Trade Services (GTS) may improve trade compliance and reciprocal symmetry analysis in global trade processes using AI. The project explores how AI-driven solutions may enhance real-time compliance monitoring, expedite documentation and categorization, discover trade data abnormalities, and optimize reciprocal symmetry analysis between trading partners. The secondary data-based research examines trade compliance AI literature and case studies on machine learning, natural language processing, and predictive analytics. Significant results show that SAP GTS AI integration improves trade compliance accuracy, efficiency, and proactivity. AI allows real-time anomaly detection, automatic categorization, and predictive analytics for risk reduction, enhancing compliance with changing rules and international trade agreements. AI-powered reciprocal symmetry analysis identifies trade disparities, promoting fair trade. The report also notes that high-quality data, model upgrades, and data protection regulations are required. Policies propose that corporations, regulators, and legislators work together to ethically employ AI in global commerce while addressing cybersecurity and data protection issues. Businesses benefit from SAP GTS' AI integration, which ensures compliance and operational efficiency in the increasingly complicated global trade sector.

References

  1. Addimulam, S., Mohammed, M. A., Karanam, R. K., Ying, D., Pydipalli, R., Patel, B., Shajahan, M. A., Dhameliya, N., & Natakam, V. M. (2020). Deep Learning-Enhanced Image Segmentation for Medical Diagnostics. Malaysian Journal of Medical and Biological Research, 7(2), 145-152. https://mjmbr.my/index.php/mjmbr/article/view/687
  2. Addimulam, S., Rahman, K., Karanam, R. K., & Natakam, V. M. (2021). AI-Powered Diagnostics: Revolutionizing Medical Research and Patient Care. Technology & Management Review, 6, 36-49. https://upright.pub/index.php/tmr/article/view/155
  3. Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96
  4. Ai, M., Lu, G., Xu, J. (2019). Endovascular Embolization of Arterial Bleeding in Patients with Severe Acute Pancreatitis. Wideochirurgia i Inne Techniki Malo Inwazyjne, 14(3), 401-407. https://doi.org/10.5114/wiitm.2019.86919
  5. Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.
  6. Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
  7. Fioravanti, A., Hauwermeiren, F. V., der Verren, S. E. V., Jonckheere, W., Goncalves, A. (2019). Structure of S-layer Protein Sap Reveals a Mechanism for Therapeutic Intervention in Anthrax. Nature Microbiology, 4(11), 1805-1814. https://doi.org/10.1038/s41564-019-0499-1
  8. Gade, P. K., Sridharlakshmi, N. R. B., Allam, A. R., & Koehler, S. (2021). Machine Learning-Enhanced Beamforming with Smart Antennas in Wireless Networks. ABC Journal of Advanced Research, 10(2), 207-220. https://doi.org/10.18034/abcjar.v10i2.770
  9. Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
  10. Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769
  11. Gurbuz, I., Ferralli, J., Roloff, T., Chiquet-Ehrismann, R., Asparuhova, M. B. (2014). SAP Domain-dependent Mkl1 Signaling Stimulates Proliferation and Cell Migration by Induction of a Distinct Gene Set Indicative of Poor Prognosis in Breast Cancer Patients. Molecular Cancer, 13, 22. https://doi.org/10.1186/1476-4598-13-22
  12. Hijaz, F., Killiny, N. (2014). Collection and Chemical Composition of Phloem Sap from Citrus Sinensis L. Osbeck (Sweet Orange). PLoS One, 9(7), e101830. https://doi.org/10.1371/journal.pone.0101830
  13. Jiayuan, W., Wang, Y., Li, H., Wenkai, T., Chen, X. (2019). Serum Apolipoprotein B-to-apolipoprotein A1 Ratio is Independently Associated with Disease Severity in Patients with Acute Pancreatitis. Scientific Reports (Nature Publisher Group), 9(1). https://doi.org/10.1038/s41598-019-44244-w
  14. Jobin, A., Marcello, I., Effy, V. (2019). The Global Landscape of AI Ethics Guidelines. Nature Machine Intelligence, 1(9), 389-399. https://doi.org/10.1038/s42256-019-0088-2
  15. Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
  16. Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123
  17. Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162
  18. Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. https://4ajournal.com/article/view/97
  19. Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663
  20. Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672
  21. Mohammed, M. A., Mohammed, R., Pasam, P., & Addimulam, S. (2018). Robot-Assisted Quality Control in the United States Rubber Industry: Challenges and Opportunities. ABC Journal of Advanced Research, 7(2), 151-162. https://doi.org/10.18034/abcjar.v7i2.755
  22. Mohammed, R., Addimulam, S., Mohammed, M. A., Karanam, R. K., Maddula, S. S., Pasam, P., & Natakam, V. M. (2017). Optimizing Web Performance: Front End Development Strategies for the Aviation Sector. International Journal of Reciprocal Symmetry and Theoretical Physics, 4, 38-45. https://upright.pub/index.php/ijrstp/article/view/142
  23. Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98
  24. Nizamuddin, M., Natakam, V. M., Sachani, D. K., Vennapusa, S. C. R., Addimulam, S., & Mullangi, K. (2019). The Paradox of Retail Automation: How Self-Checkout Convenience Contrasts with Loyalty to Human Cashiers. Asian Journal of Humanity, Art and Literature, 6(2), 219-232. https://doi.org/10.18034/ajhal.v6i2.751
  25. Nizamuddin, M., Natakam, V. N., Kothapalli, K. R. V., Raghunath Kashyap Karanam, R. K., Addimulam, S. (2020). AI in Marketing Analytics: Revolutionizing the Way Businesses Understand Consumers. NEXG AI Review of America, 1(1), 54-69.
  26. Pinhu, L., Qin, Y., Xiong, B., You, Y., Li, J. (2014). Overexpression of Fas and FasL Is Associated with Infectious Complications and Severity of Experimental Severe Acute Pancreatitis by Promoting Apoptosis of Lymphocytes. Inflammation, 37(4), 1202-12. https://doi.org/10.1007/s10753-014-9847-8
  27. Plastino, E., Purdy, M. (2018). Game Changing Value from Artificial Intelligence: Eight Strategies. Strategy & Leadership, 46(1), 16-22. https://doi.org/10.1108/SL-11-2017-0106
  28. Richardson, N., Manikyala, A., Gade, P. K., Venkata, S. S. M. G. N., Asadullah, A. B. M., & Kommineni, H. P. (2021). Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making. Technology & Management Review, 6, 50-62. https://upright.pub/index.php/tmr/article/view/163
  29. Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
  30. Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
  31. Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
  32. Sridharlakshmi, N. R. B. (2021). Data Analytics for Energy-Efficient Code Refactoring in Large-Scale Distributed Systems. Asia Pacific Journal of Energy and Environment, 8(2), 89-98. https://doi.org/10.18034/apjee.v8i2.771
  33. Talla, R. R., Manikyala, A., Nizamuddin, M., Kommineni, H. P., Kothapalli, S., Kamisetty, A. (2021). Intelligent Threat Identification System: Implementing Multi-Layer Security Networks in Cloud Environments. NEXG AI Review of America, 2(1), 17-31.
  34. Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94
  35. Vlasov, V., Chebotareva, V., Rakhimov, M., Kruglikov, S. (2017). AI User Support System for SAP ERP. Journal of Physics: Conference Series, 913(1). https://doi.org/10.1088/1742-6596/913/1/012001
  36. Yun-Shing, P., Yung-Chang, C., Ya-Chung, T., Chih-Wei, Y., Lien, J-M. (2015). Serum Levels of Apolipoprotein A-I and High-density Lipoprotein can Predict Organ Failure in Acute Pancreatitis. Critical Care, 19. https://doi.org/10.1186/s13054-015-0832-x

Similar Articles

1-10 of 30

You may also start an advanced similarity search for this article.