Skip to main navigation menu Skip to main content Skip to site footer

Peer Reviewed Article

Vol. 6 (2021)

Emergency Response Planning: Leveraging Machine Learning for Real-Time Decision-Making

Submitted
2021 February 23
Published
2021-04-14

Abstract

Machine learning (ML) approaches may improve real-time decision-making and crisis management in emergency response planning. ML might enhance situational awareness, resource allocation, and crisis prediction to better respond to emergencies. Secondary data examines the literature on ML applications in crisis management, including predictive modeling, classification, reinforcement learning, and Clustering. ML can increase response efficiency by integrating varied real-time data sources, anticipating crisis evolution, and dynamically assigning resources. However, data quality, model interpretability, and privacy issues exist. The paper recommends explainable AI models and privacy-preserving technology to overcome these challenges. Policy implications include standardizing data standards, increasing ML model openness, and implementing ethical data use rules. By solving these difficulties, ML may be used to develop robust, adaptive, and ethical emergency response systems that save lives and improve crisis management.

References

  1. Allam, A. R. (2020). Integrating Convolutional Neural Networks and Reinforcement Learning for Robotics Autonomy. NEXG AI Review of America, 1(1), 101-118.
  2. Bazargan-Lari, M. R. (2018). Real-Time Response to Contamination Emergencies of Urban Water Networks. Iranian Journal of Science and Technology. Transactions of Civil Engineering, 42(1), 73-83. https://doi.org/10.1007/s40996-017-0071-2
  3. Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.
  4. Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
  5. Doyle, E. E. H., Paton, D., Johnston, D. M. (2015). Enhancing Scientific Response in a Crisis: Evidence-based Approaches from Emergency Management in New Zealand. Journal of Applied Volcanology, 4(1), 1. https://doi.org/10.1186/s13617-014-0020-8
  6. Gasmelseid, T. (2014). Improving Emergency Response Systems Through the Use of Intelligent Information Systems. International Journal of Intelligent Information Technologies, 10(2), 37-55. https://doi.org/10.4018/ijiit.2014040103
  7. Granda, J. M., Donina, L., Dragone, V., Long, D-L., Cronin, L. (2018). Controlling an Organic Synthesis Robot with Machine Learning to Search for New Reactivity. Nature, 559(7714), 377-381, 381A-381C. https://doi.org/10.1038/s41586-018-0307-8
  8. Gummadi, J. C. S., Narsina, D., Karanam, R. K., Kamisetty, A., Talla, R. R., & Rodriguez, M. (2020). Corporate Governance in the Age of Artificial Intelligence: Balancing Innovation with Ethical Responsibility. Technology & Management Review, 5, 66-79. https://upright.pub/index.php/tmr/article/view/157
  9. Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
  10. Kaur, J., Mann, K. S. (2018). AI based HealthCare Platform for Real Time, Predictive and Prescriptive Analytics using Reactive Programming. Journal of Physics: Conference Series, 933(1). https://doi.org/10.1088/1742-6596/933/1/012010
  11. Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123
  12. Kommineni, H. P. (2020). Automating SAP GTS Compliance through AI-Powered Reciprocal Symmetry Models. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 44-56. https://upright.pub/index.php/ijrstp/article/view/162
  13. Kommineni, H. P., Fadziso, T., Gade, P. K., Venkata, S. S. M. G. N., & Manikyala, A. (2020). Quantifying Cybersecurity Investment Returns Using Risk Management Indicators. Asian Accounting and Auditing Advancement, 11(1), 117–128. Retrieved from https://4ajournal.com/article/view/97
  14. Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663
  15. Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672
  16. Li, N., Sun, M., Bi, Z., Su, Z., Wang, C. (2014). A New Methodology to Support Group Decision-making for IoT-based Emergency Response Systems. Information Systems Frontiers, 16(5), 953-977. https://doi.org/10.1007/s10796-013-9407-z
  17. Ounacer, S., Talhaoui, M. A., Ardchir, S., Daif, A., Azouazi, M. (2017). A New Architecture for Real Time Data Stream Processing. International Journal of Advanced Computer Science and Applications, 8(11). https://doi.org/10.14569/IJACSA.2017.081106
  18. Roberts, C., Kundavaram, R. R., Onteddu, A. R., Kothapalli, S., Tuli, F. A., Miah, M. S. (2020). Chatbots and Virtual Assistants in HRM: Exploring Their Role in Employee Engagement and Support. NEXG AI Review of America, 1(1), 16-31.
  19. Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
  20. Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
  21. Sridharlakshmi, N. R. B. (2020). The Impact of Machine Learning on Multilingual Communication and Translation Automation. NEXG AI Review of America, 1(1), 85-100.
  22. Syafrudin, M., Alfian, G., Fitriyani, N. L., Rhee, J. (2018). Performance Analysis of IoT-Based Sensor, Big Data Processing, and Machine Learning Model for Real-Time Monitoring System in Automotive Manufacturing. Sensors, 18(9). https://doi.org/10.3390/s18092946
  23. Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94
  24. Zhao, L. (2019). Business Intelligence Implementation in the Framework of Enhanced Learning Application. IOP Conference Series. Materials Science and Engineering, 563(3). https://doi.org/10.1088/1757-899X/563/3/032015
  25. Zheng, T., Chen, G., Wang, X., Chen, C., Wang, X. (2019). Real-time Intelligent Big Data Processing: Technology, Platform, and Applications. Science China. Information Sciences, 62(8), 82101. https://doi.org/10.1007/s11432-018-9834-8