Skip to main navigation menu Skip to main content Skip to site footer

Peer Reviewed Article

Vol. 5 (2020)

Blockchain-Driven AI Solutions for Medical Imaging and Diagnosis in Healthcare

Submitted
2025 January 1
Published
2020-04-25

Abstract

This research examines how blockchain and AI might improve medical imaging and diagnosis. Blockchain is reviewed to improve diagnosis accuracy and efficiency in AI-driven medical imaging by addressing data security, privacy, and transparency. The research synthesizes current accomplishments and identifies gaps in technology integration using secondary data from peer-reviewed journals, conference proceedings, and reports. Significant discoveries demonstrate blockchain's ability to secure and decentralize data exchange and enable collaborative AI model building while protecting patient privacy. Blockchain increases AI model openness and traceability, boosting healthcare decision-making trust and accountability. Diagnostic processes are streamlined by AI and blockchain, boosting operational efficiency and patient outcomes. Scalability, interoperability, and regulatory compliance remain issues. The research stresses the necessity for clear regulatory frameworks and ethical principles to overcome these constraints. Policy implications include standardizing interoperability standards, investing in scalable blockchain technologies, and creating ethical frameworks for responsible AI usage in healthcare. Blockchain-driven AI technologies may improve medical imaging and diagnostics, creating a more secure, efficient, patient-centered healthcare environment.

References

  1. Devarapu, K., Rahman, K., Kamisetty, A., & Narsina, D. (2019). MLOps-Driven Solutions for Real-Time Monitoring of Obesity and Its Impact on Heart Disease Risk: Enhancing Predictive Accuracy in Healthcare. International Journal of Reciprocal Symmetry and Theoretical Physics, 6, 43-55. https://upright.pub/index.php/ijrstp/article/view/160
  2. Gade, P. K. (2019). MLOps Pipelines for GenAI in Renewable Energy: Enhancing Environmental Efficiency and Innovation. Asia Pacific Journal of Energy and Environment, 6(2), 113-122. https://doi.org/10.18034/apjee.v6i2.776
  3. Kamel Boulos, M. N., Peng, G., VoPham, T. (2019). An Overview of GeoAI Applications in Health and Healthcare. International Journal of Health Geographics, 18. https://doi.org/10.1186/s12942-019-0171-2
  4. Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
  5. Khezr, S., Moniruzzaman, M., Yassine, A., Benlamri, R. (2019). Blockchain Technology in Healthcare: A Comprehensive Review and Directions for Future Research. Applied Sciences, 9(9). https://doi.org/10.3390/app9091736
  6. Kommineni, H. P. (2019). Cognitive Edge Computing: Machine Learning Strategies for IoT Data Management. Asian Journal of Applied Science and Engineering, 8(1), 97-108. https://doi.org/10.18034/ajase.v8i1.123
  7. Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663
  8. Krittanawong, C., Bomback, A. S., Baber, U., Bangalore, S., Messerli, F. H. (2018). Future Direction for Using Artificial Intelligence to Predict and Manage Hypertension. Current Hypertension Reports, 20(9), 1-16. https://doi.org/10.1007/s11906-018-0875-x
  9. Krittanawong, C., Johnson, K. W., Tang, W. H. W. (2019). How Artificial Intelligence Could Redefine Clinical Trials in Cardiovascular Medicine: Lessons Learned from Oncology. Personalized Medicine, 16(2), 87–92. https://doi.org/10.2217/pme-2018-0130
  10. Kundavaram, R. R., Rahman, K., Devarapu, K., Narsina, D., Kamisetty, A., Gummadi, J. C. S., Talla, R. R., Onteddu, A. R., & Kothapalli, S. (2018). Predictive Analytics and Generative AI for Optimizing Cervical and Breast Cancer Outcomes: A Data-Centric Approach. ABC Research Alert, 6(3), 214-223. https://doi.org/10.18034/ra.v6i3.672
  11. Lewis, S. J., Gandomkar, Z., Brennan, P. C. (2019). Artificial Intelligence in Medical Imaging Practice: Looking to the Future. Journal of Medical Radiation Sciences, 66(4), 292-295. https://doi.org/10.1002/jmrs.369
  12. Li, S., Liu, Y., Yuan, Y., Li, J., Lan, W. (2018). Implementation of Enterprise Imaging Strategy at a Chinese Tertiary Hospital. Journal of Digital Imaging, 31(4), 534-542. https://doi.org/10.1007/s10278-017-0044-9
  13. Mohammed, R., Addimulam, S., Mohammed, M. A., Karanam, R. K., Maddula, S. S., Pasam, P., & Natakam, V. M. (2017). Optimizing Web Performance: Front End Development Strategies for the Aviation Sector. International Journal of Reciprocal Symmetry and Theoretical Physics, 4, 38-45. https://upright.pub/index.php/ijrstp/article/view/142
  14. Narsina, D., Gummadi, J. C. S., Venkata, S. S. M. G. N., Manikyala, A., Kothapalli, S., Devarapu, K., Rodriguez, M., & Talla, R. R. (2019). AI-Driven Database Systems in FinTech: Enhancing Fraud Detection and Transaction Efficiency. Asian Accounting and Auditing Advancement, 10(1), 81–92. https://4ajournal.com/article/view/98
  15. Ranschaert, E. R., Morozov, S., Algra, P. R. (2019). Artificial Intelligence in Medical Imaging: Opportunities, Applications and Risks. Artificial Intelligence in Medical Imaging. https://doi.org/10.1007/978-3-319-94878-2
  16. Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
  17. Savadjiev, P., Chong, J., Dohan, A., Vakalopoulou, M., Reinhold, C. (2019). Demystification of AI-driven Medical Image Interpretation: Past, Present and Future. European Radiology, 29(3), 1616-1624. https://doi.org/10.1007/s00330-018-5674-x
  18. Siegersma, K. R., Leiner, T., Chew, D. P., Appelman, Y., Hofstra, L. (2019). Artificial Intelligence in Cardiovascular Imaging: State of the Art and Implications for the Imaging Cardiologist. Netherlands Heart Journal, 27(9), 403-413. https://doi.org/10.1007/s12471-019-01311-1
  19. Siyal, A. A., Junejo, A. Z., Zawish, M., Ahmed, K., Khalil, A. (2019). Applications of Blockchain Technology in Medicine and Healthcare: Challenges and Future Perspectives. Cryptography, 3(1), 3. https://doi.org/10.3390/cryptography3010003
  20. Thompson, C. R., Talla, R. R., Gummadi, J. C. S., Kamisetty, A (2019). Reinforcement Learning Techniques for Autonomous Robotics. Asian Journal of Applied Science and Engineering, 8(1), 85-96. https://ajase.net/article/view/94

Similar Articles

11-20 of 26

You may also start an advanced similarity search for this article.