

https://upright.pub/index.php/ijrstp/
Original Contribution

A Review of Hosting Enterprise SaaS with IaC on Multi-cloud
Platforms

Sandesh Achar1֎, Nathaniel Louis Tisuela2֎

Keywords: Infrastructure-as-Code, IaC, Multi-cloud, SaaS, Enterprise Architecture, Orchestration,

Containerization

International Journal of Reciprocal Symmetry and Theoretical Physics

Vol. 7, Issue 1, 2020 [Pages 14-23]

This paper explores the concepts of Enterprise Software as a Service (SaaS), the reasons for hosting

a SaaS solution on a multi-cloud platform, and the benefit of using Infrastructure as Code (IaC) on

a multi-cloud for quick provisioning. The paper also details the various challenges faced while

adopting a multi-cloud solution. In conclusion, the paper recommends using multi-cloud and IaC

to host all Enterprise SaaS solutions.

INTRODUCTION

Enterprises in the modern economy want to

explore and exploit the contemporary business

world is to offering their business and processes as

services to other organizations in the industry.

Working on shared and managed services models

is becoming necessary for organizations of all

sizes. Smaller enterprises are greatly benefited

from this model offered by larger organizations

(Atkins et al., 2010). The objective is not just to

reduce the cost of the operations but also to create

a second layer of business operators in the form of

smaller organizations, which can further the

services of the organizations to smaller pockets.

The other aspect that most enterprises focus on is

adopting cloud infrastructure to reduce their costs,

improve their infrastructure utilization, build better

availability and scalability, and enforce more

robust security. The choice of the cloud provider

depends on several non-functional requirements of

the solutions deployed on the infrastructure

(Burkon, 2013).

1Director of Cloud Engineering, Workday Inc., Pleasanton, California, USA
֎sandeshachar26@gmail.com
2Software Engineer, Palo Alto, California 95035, USA
֎natetisuela@gmail.com

CONCEPTS

Enterprise SaaS

Enterprises use SaaS for two purposes: improving

operational efficiency and expanding business

penetration. It is possible either by using SaaS or by

offering SaaS. In either of the cases, SaaS plays the first

role for enterprises to embark on the wave of Industry

4.0. When an enterprise uses a SaaS, it generally looks

for services in infrastructure, platforms, and standard

products, like CRM. Based on these demands, most

SaaS offerings are available from cloud service

providers. The objective is to reduce the cost of

infrastructure provisioning and management. The aim is

also to improve resource utilization and increase the

performance of the solutions. On the other side, some

enterprises are the ones that offer their business

processes and products as a SaaS for others to use them.

A good example is SalesForce which offers its CRM

services to others. The objective of such enterprises is to

increase the usage of their products and expand their

businesses by helping smaller players to become part of

their business model. It can be seen as a counterpart of

the franchise business model in the physical business

https://upright.pub/index.php/ijrstp/
mailto:sandeshachar26@gmail.com
mailto:natetisuela@gmail.com

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

15

world. Even start-ups offer services ranging from ticket

reservations in the hospitality industry to invoicing and

tax calculation services in the finance domain.

Infrastructure as Code

When planning to expose their services as a SaaS

offering for others, efficient management of the

resources is critical. All the resources should be

controlled, monitored, and managed like all other

artifacts collected. That makes it necessary to codify the

infrastructure and all its resources. The new

representation of the infrastructure is like any other

piece of code and can be stored under an SCM and

executed using an appropriate orchestration tool (Achar,

2016). IaC is an excellent way to standardize the process

of provisioning and improves the efficiency of the

provisioning process. In addition, it brings a high level

of consistency in the infrastructure across multiple

environments and reduces the differences in the

configuration. However, the most important benefit

from the perspective of SaaS is that the codified

infrastructure can be stored alongside the application

code, making it extremely easy and repeatable to build

the application, create the infrastructure, and deploy the

application (Li et al., 2011).

Fig. 1 High-level example of IaC

Multi-cloud Platform

Hosting a SaaS requires infrastructure provisioning on a

cloud platform. The cloud may be a private, a public

cloud, or a hybrid cloud. However, every cloud service

provider has some or other limitations and restrictions.

For example, AWS services are incredibly efficient in

the North American regions; however, Alibaba cloud

services are better in China and Russia. Like geographic

limitations, cloud service providers experience

performance degradation, network latency, and even

legal restrictions in different places.

One key disadvantage cloud service users face is

vendor-technology lock-in issues. As a result,

applications become dependent on specific services of

cloud providers and lose their ability to port across

multiple platforms. This leads to cost escalation, and

upgrades are problematic. Multi-cloud options are the

way forward to overcome all such issues. For example,

an application is hosted concurrently on the cloud

environments offered by different service providers. In

addition, the application uses the best services of other

service providers to present a seamless experience to its

users. In the world of SaaS, it helps the enterprise to

cater to high scalability and availability at a lower cost

by leveraging the services of the provider that are closest

and most relevant to the user (Odun-Ayo et al., 2019).

.

Fig. 2 Cloud-specific Observability Suites are an

example of vendor lock-in issues.

OPPORTUNITIES

Enterprises require multi-cloud solutions to meet

various opportunities available. Therefore, evaluating

the many perspectives of using a multi-cloud is essential

when launching a SaaS solution.

Region-based Factors

There are many public and private cloud service

providers across the globe. Most of these service

providers cover multiple regions of the world. It helps a

SaaS enterprise to increase the reach and depth of its

services to all areas of the world using different cloud

providers. As a result, the primary cloud provider may

experience high latency or complete unavailability. In

such cases, another region-specific cloud provider

comes to the rescue. A classic example of this case is the

use of Alibaba Cloud in China and close by regions. A

SaaS solution covering all areas of the world may

require their services to be more efficient in China.

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

16

Fig. 3 Region-wise separate Cloud setup

Capability-based Factors

Some service providers are better in some regions of work

than others providers. For example, one cloud vendor

may quickly process many requests with large data

transfers while another may cater to large data transfers

with high efficiency. A typical enterprise-grade SaaS

solution requires many services in application

management, data management, infrastructure,

monitoring, governance, and more. The best examples are

AWS and Azure (Achar, 2017). While Azure offers one

of the best cognitive services by exposing AI services as

API, AWS offers better machine learning services.

Redundancy-based Factors

When launching an Enterprise-grade SaaS solution, it is

essential to maintain its access, reliability, and security.

Irrespective of the cloud service provider, disasters are

a part of life. Every solution experiences some failure at

the application or infrastructure layers. While DevOps

teams take care of the application issues, the

infrastructure issues are primarily centered on the cloud

provider and their service SLAs. It is a great way to

mitigate the risk of complete failure by redundantly

deploying all solution components on a separate and

different cloud. Even if a natural calamity or unforeseen

conditions cause a network failure or failure, the SaaS

solution can quickly switch over to the other cloud

provider and continue to serve its customers. This is one

of the most common reasons for the popularity of multi-

cloud solutions. Furthermore, Infrastructure as Code

allows the infrastructure deployment process to be

abstracted into a series of scripts. Being able to deploy

infrastructure in a consistent and automated fashion

rapidly is an ability that is critical for disaster recovery.

Innovation-based Factors

Like capability-based factors, innovation is another

critical driving factor for SaaS solutions. A SaaS

solution undergoes various phases during its lifecycle.

Enterprises always need to evaluate the latest trends and

evolve a solution around the same. However, only some

cloud vendors support the latest technology trends from

day 1. Instead, they let the dust settle before offering

new technology services to their customers. Google is

one cloud provider that provides new cutting-edge

technology-based services to their customers. In

addition, it gives an excellent opportunity for Enterprise

customers to keep evolving their SaaS solutions for

better performance, scalability, and analytics.

Compliance-based Factors

An Enterprise SaaS solution serving customers across the

globe must comply with several laws in the countries

where they provide their services. Many of these

compliances must use the underlying cloud infrastructure

to adhere to the regulations. In such a case, many private

cloud providers score better than public cloud providers.

To comply with the policies and laws of the land, such as

those about the storage and management of financial data

or privacy-related information, SaaS operators need to

partition their data and processing units across multi-cloud

setups. While maintaining the integrity of the SaaS

solution, multi-cloud helps the owning enterprise fully

comply with the country's regulations.

Operations-based Factors

The operation methodology is also essential for selecting a

multi-cloud platform. For example, some enterprises

require a private cloud setup to store their Intellectual

Property artifacts, such as the design documents and the

code. In contrast, they use a public cloud provider to host

their applications (Achar, 2018). This allows a great

mechanism to keep the internal development issues

separate from the production issues. Also, it will enable the

implementation of different levels of security standards in

different environments on completely different clouds,

such as having an MFA-based VPN connectivity for the

private cloud and standard token-based security for the

production environment. In addition, the organization may

build teams for their respective capabilities to maintain

such environments on different clouds.

CHALLENGES

With the fast-increasing curve of multi-cloud adoption,

enterprises experience numerous challenges. Many

digital reports and surveys are available highlighting the

common challenges faced regularly (Palos-Sánchez et

al., 2017). Understanding these challenges upfront and

mitigating their impact on the overall solution is an

essential activity for every Enterprise planning to host a

SaaS across a multi-cloud hosting platform.

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

17

Security

One of the biggest challenges of a SaaS-based solution

is ensuring the security of the offering. A SaaS offering

always suffers from the risk and threat of data loss and

theft. Any vulnerability in the application or the

infrastructure of the SaaS can allow unauthorized access

and malicious script executions and expose the APIs in

an insecure manner to the external world. Therefore, not

just the PII data of the users but also the Enterprise level

IP data is under threat. Even the internal communication

channels are vulnerable to eavesdropping and hacking

when a solution is extended across a multi-cloud

platform. Furthermore, each service provider has its

security realm, and it is not easy for the application

solution team to align the security configuration of each

of the providers. Besides, it is difficult to monitor the

entire solution spread across multi-cloud because of the

increased attack surface of the solution. The last

challenge in the case of SaaS, as well as multi-cloud, is

related to the uniform enforcement of the security

policies of the organization as well as those prescribed

by the law of the land. Furthermore, since the multi-

cloud locations may differ, a single application may be

subject to different rules about the hosting place.

Reliability

A SaaS solution is chosen over a self-hosted solution

because of its cost benefits and reliability. When a

standard solution may suffer disruptions and shutdowns,

a SaaS solution is expected to always be online through

one route or another. It is ensured using load balancers

across zones and regions with the configuration of on-

demand infrastructure. In the case of a multi-cloud

SaaS, the availability and reliability of the entire

solution rest on the strength of its integration points.

However, there are complex issues with the

orchestration of the application instances running on

different cloud platforms or the synchronization of

services running on various cloud platforms. In addition,

the multi-cloud setup brings more flexibility in choices

concerning services like virtual machines, storage

services, database services, and more.

Observability

Multi-cloud SaaS solutions have unique challenges

when it comes to observability. The method of obtaining

logs and metrics of SaaS solutions may differ between

different cloud vendors. Thus, tools to collect and

present logs and metrics from SaaS solutions should be

carefully chosen to reduce implementation and

maintenance costs. Additionally, SaaS solutions may

generate many kinds of metrics. For example, when

developing a SaaS solution, it is crucial to be intentional

about what metrics the solution should produce.

Furthermore, metrics should be presented in a way that

provides value for site reliability and critical

performance indicators. SaaS solutions require a lot

more monitoring than the standard on-premises

applications. For example, a SaaS solution would

simultaneously serve several customers, and a single

glitch may result in loss of business or data or both for

many users. Along with monitoring, a robust alert

mechanism is needed to notify the administrators and

support teams of any impending trouble in the

application. In addition, proactive health checks need to

be set up for the SaaS solution on each of the underlying

cloud platforms. On a multi-cloud SaaS solution, the

challenge is that more than a single tool may be needed

to monitor the infrastructure provided by different

vendors, and configuring a device to perform multi-

platform monitoring takes work. In addition, the support

teams struggle with the constant need to know what is

running and what is down. While support teams can lean

on cloud-specific observability suites, there is also value

in maintaining a single pane of glass when it comes to

monitoring. By observing a multi-cloud SaaS solution

through a single pane of glass, support teams can better

identify the state of the resolution, what is changing, and

if any issues exist. The other challenge is that any legacy

monitoring tool may need to be better for all the cloud

platforms. Apart from monitoring, a mechanism for

notification is needed to keep the users updated about

the infrastructure's status, which means either

integration with a centralized notification center or

connecting with vendor-specific notification services.

Expertise and References

Setting up a multi-cloud solution requires knowledge

and experience with the services of multiple cloud

vendors (Achar, 2019). Although having all the required

skillsets available within a single team is desirable, it is

tough to hire such a team. The challenge is two-fold:

identifying the exemplary services offered by the right

cloud vendor and identifying the learning path for the

team to get onto it quickly.

Governance

Managing the entire multi-cloud solution from a single

place is one of the most challenging things to achieve.

There needs to be a single authentication and

authorization server to define an exhaustive set of users,

user roles, and their respective permissions. A

centralized mechanism would ensure the correct levels

of security and control across all various cloud

platforms from different vendors. Therefore, it is

essential to govern the primary custody of the SaaS

solution hosted on a multi-cloud platform. Governance

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

18

is an area where Infrastructure as Code shines.

Infrastructure as Code can enforce security policies and

restrictions across all users and user roles when used

effectively. Equally important, a single pane of glass for

multi-cloud governance is better achieved through

Infrastructure as Code because it avoids using cloud-

specific resource management tools.

Automation

Automation is another excellent challenge faced by

organizations on a multi-cloud solution. Automation

tools must be set up to span their work areas across all

the cloud vendor platforms. One challenge in

automation in a multi-cloud environment is

configuration management. Standard automation tools

for configuration management are Chef and Puppet.

Like most configuration management tools, Chef and

Ansible follow a master-agent design. This requires

setting up the tool in one location, configuring a master-

agent serving mechanism, and running platform agents

on all participating cloud platforms. Agentless

configuration management software such as Ansible is

available, but still, a master is required. Furthermore,

automation scripts may need to be cloud-specific,

especially for niche tasks. Regardless of choice,

automation in a multi-cloud environment requires a

great deal of expertise along with time to set up and

verify. After identifying the right orchestration tool, the

code pipelines need to be configured (Pasupuleti et al.,

2019). It includes ensuring access to the code and

artifact servers and appropriate build and deployment

scripts. Orchestrating the entire process on the tool is

critical to achieving good reliability and robustness.

Configuration Drift

Aqua Security, a cloud-native cyber security

company, defines configuration drift as "when the

configuration of an environment ‘drifts,' or in other

words, gradually changes, and is no longer

consistent with an organization's requirements”.

Configuration drift can introduce several

organizational problems: security, cost

inefficiency, and maintenance difficulties. By

nature, Enterprise SaaS typically consists of

multiple components such as databases, network

configurations, and load balancers. Configuration

drift can be introduced as these pieces of

infrastructure move through their lifecycles. In

addition, moving to multi-cloud presents valuable

services such as VPCs, security groups, and more.

Such infrastructure may also be duplicated across

different regions for redundancy or to support new

customers. Consequently, detecting and managing

configuration drift across cloud vendors can

become a growing challenge.

Cost Optimization

Identifying the right reasons for setting up a multi-cloud

environment and addressing all the challenges

mentioned above requires a reasonable amount of time

and cost. Apart from the cost of identifying, analyzing,

and setting up everything, the most important cost center

is the cost of the actual operation. Services need to be

configured and operated on each cloud vendor

environment, meeting the principles of cloud and SaaS

solutions. In addition, organizations must define their

target SLAs, performance, and availability factor to

calculate their cost load (Villarino & Orea, 2012).

Finally, precise planning is needed to meet the cost

targets while ensuring the other KRAs are met

appropriately.

INFRASTRUCTURE SOLUTIONS

One of the most significant challenges in a multi-cloud

solution is setting up a standard uniform infrastructure

using different cloud providers' additional services and

achieving the same reliability, security, and

performance levels (Rahman et al., 2019). Traditionally,

most of the infrastructure activities have remained

entirely manual; hence, making it uniform becomes

even more difficult. Infrastructure as Code (IaC) is the

perfect solution for such cases.

Push button provisioning

Infrastructure management has remained a manual

activity, but it needs to be fully automated in the world

of SaaS and the cloud. The best desirable state is to have

a push-button mechanism to provide the required

infrastructure in no time. With the help of IaC, all

prerequisites and dependencies of infrastructure can be

configured in a single file and executed using an

orchestration tool such as Terraform or Ansible.

Standard and Uniform

IaC configuration files contain a standard definition of

the infrastructure. For example, if an EC2 instance

needs to be provisioned on AWS, the IaC file would

have the whole purpose of CPU, memory, and storage.

The same file would also contain a similar description

for provisioning a VM on Azure. One standard file can

help provide similar services on different cloud

platforms with ease and certainty.

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

19

Fig. 4 Uniform IaC code pushed to Cloud platforms

Fast and Reliable

Once an IaC configuration is prepared and tested, it can

be executed reliably using a tool or custom scripts on

any platform. While the preparation of the configuration

file may take time, the execution is generally fast and

reliable. It fetches all required dependencies and creates

the environment quickly without any manual

interventions. In a multi-cloud environment, it reduces

the difficulty of moving between different platforms for

provisioning services (Venkatachalam et al., 2014).

Repetitive and On-demand

The best part of using IaC on a multi-cloud platform is that

a single configuration file can provision multiple instances

of the services in many environments on different clouds.

It can be done as often as needed and on a need basis. The

IaC concept makes it smooth and easy to repeat the same

repeatedly without any problems or delay.

IAC TECHNIQUES

Using VCS with IaC Configuration Management

Hosting IaC in a repository with version control is a

straightforward concept and standard in the industry.

However, practicing this to use VCS to validate all IaC

challenges is essential. Automating configuration

management through IaC is a powerful tool to

disseminate new features and bugs across a multi-cloud

environment. From deploying an application to

managing machine configurations, any new automation

should be tested and validated in appropriate settings.

Fig. 5 An example of testing and validating

configuration management automation changes

Such continuous testing should be integrated with the

constant development of IaC by not allowing any

production changes unless tested appropriately. This

will solidify the sense of version control and provide

confidence when deploying new infrastructure

changes because the past, current, and subsequent

versions have been validated.

Scaling Cloud Infrastructure

As previously mentioned, using declarative IaC

tools for provisioning cloud infrastructure will help

reduce configuration drift when infrastructure stacks

are provisioned in different environments. In

addition, it becomes more intuitive to deduce each

infrastructure component when looking at

declarative IaC. Consequently, one can easily

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

20

anticipate the outcome of applying IaC resource

definitions when scaling a SaaS platform in the

cloud. Equally important, it is good to recognize that

different environments may call for specific cloud

infrastructure configurations. This is not

configuration drift. A simple example is using other

hostnames for additional virtual machines which

serve the same purpose but in different regions. For

example, instead of defining these machines

separately, IaC resource definitions can be

generalized and supplemented with environment

variables so that provisioning can be specified for

different environments. This results in less code

being maintained without sacrificing the

documentation of cloud infrastructure. Furthermore,

this approach eases the application of relevant

updates to all environments. From a SaaS

perspective, this allows the platform's stack to be

deployed to multiple regions to scale with a growing

customer base with less code change overhead.

Additionally, increases in virtual machine memory

and CPU specifications can easily be updated across

all regions through a generalized definition of

virtual machine resources in IaC.

CONFIGURATION DRIFT AND

MANAGEMENT – IAC TECHNIQUES

Configuration Drift Prevention and Detection

IaC offers measures to prevent configuration drift.

Configuration drift occurs when infrastructure

becomes inconsistent with an organization's

requirements, defined in the documentation. IaC

can become both the documentation and method of

provision for cloud infrastructure. Using

declarative IaC tools, such as Terraform, to

provision infrastructure allows all resources to be

defined clearly in code. This also helps guarantee

that the infrastructure deployed in one region is

consistent with infrastructure in another area. Thus,

declarative IaC tools can become accurate living

documentation of cloud infrastructure. However,

this initiative can be defeated if infrastructure

changes are made outside the IaC tool of choice.

When all infrastructure changes are made through

IaC, IaC becomes the historical and current source

of truth of cloud infrastructure (Imam et al., 2016).

As a result, IaC becomes an essential tool in

preventing configuration drift by closing the

distance between requirements and reality.

Of course, configuration drift can happen after the

infrastructure is provisioned. For multi-cloud

SaaS, detecting configuration drift across multiple

cloud vendors is crucial. Cloud-agnostic

configuration drift detection tools provide critical

observability to this problem. For example,

Terraform builds drift detection on top of its IaC

foundation. By using Terraform state files that

detail the expected current state of cloud

infrastructure, terraform can report drift incidents

across different cloud vendors. Cloud-agnostic

configuration drift detection tools avoid learning

overhead and fractured observability of cloud-

specific drift detection tools.

Idempotency as a means against Configuration Drift

IaC is a powerful tool against configuration drift in

a multi-cloud environment. At the same time,

improper use of IaC can introduce configuration

drift. It is crucial to consider the proper techniques

for using IaC and idempotency. Idempotency is

important when changes are applied using IaC. All

IaC changes must result in anticipatable outcomes.

If infrastructure is already at the desired state, IaC

should keep the environment the same. Otherwise,

unexpected changes may be introduced to the

cloud infrastructure. For example, many IaC

configuration management tools, such as Ansible,

provide idempotency out of the box. At the same

time, not all IaC changes on such IaC tools may be

idempotent. Therefore, it becomes crucial to ensure

the usage of IaC is idempotent. This can be

achieved by writing checks in IaC to look at current

configurations before applying a change.

Thus, it is an engineer's due diligence to test IaC for

idempotency, even if the IaC tool of choice is built

around idempotency. Terraform offers a planning

stage before execution so that all changes can be

reviewed before they are applied (Yadin, 2012).

Ansible and Chef both offer testing suites to test IaC

in different environments. Hummer, Rosenberg,

Oliveria, and Eilam describe effective techniques in

testing idempotency in IaC in their research paper,

"Testing Idempotency for Infrastructure as Code".

Their test designs for automation tasks written in

Chef provide excellent examples and describe the

importance of considering different environments

and infrastructure states when testing IaC for

idempotency.

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

21

Configuration Enforcement as a means against

Configuration Drift

There are IaC tools that specialize in Configuration

Management. Ansible, Chef, and Puppet are

examples. Each tool can automate how a machine's

software is configured. Typically, Configuration

Management IaC tools provide a level of support

for idempotency (Fadziso et al., 2018). Thus, these

tools can minimize Configuration Drift by

enforcing uniform software configuration across

all machines in a multi-cloud environment.

Configuration Management IaC tools such as Chef

can be beneficial in such enforcement. Chef is built

around a server-client design. The Chef Server will

contain a list of hosts and the user-defined

procedures for configuring software in each type of

host. The Chef Client runs on each host – it will

pull the set of policies from the Chef Server and

execute them on its host. The Chef Client will also

report to the Chef Server when it fails to run the set

of procedures. Finally, the Chef Client will run

regularly on each host. This server-client design

ensures that configuration changes are propagated

from a single source of truth. Should Configuration

Drift occur on a host, it will not last long -- the

desired configuration state is enforced on each host

because the client runs the procedures regularly.

Cloud Infrastructure Provisioning vs. Configuration

Management

While the same tool can be used to automate both

cloud infrastructure provision and the subsequent

configuration management of that infrastructure,

there are reasons why some are more effective in

provisioning. In contrast, others are effective in

configuration management. Most cloud providers

provide their own IaC tool for provisioning

infrastructure. Cloud-agnostic IaC tools that

succeed in provisioning infrastructure aim to unify

all cloud provider infrastructure provisioning

under a uniform API. On the other hand,

configuration management IaC tools seek to

configure provisioned infrastructure, which

includes automating tasks that may be performed

on machines with varying operating systems. Both

provisioning and configuration management are

concerned with configuration drift and automation.

However, their responsibilities in these areas differ

enough that having focused tools will benefit more

than a single tool to rule them all. Thus, it is good

to depict a separation of concerns when using

Cloud Infrastructure Provisioning IaC tools vs.

Configuration Management IaC tools.

Fig. 6 Cloud Infrastructure Provisioning IaC

should be responsible for the machine, while

Configuration Management IaC is responsible for

the software in the machine.

From there, one can understand how each tool's

strength can be leveraged for automating each

stage of a system's lifecycle. For example, one may

argue that there are benefits of using one tool to

rule them all – less time spent learning and

simplified maintenance. However, automation can

happen gracefully with less technical debt when

the right tool is used for the right job.

Fig. 7 By using the lifecycle of a system as context,

one can be mindful of which type of IaC tool to use.

An example of successfully separating the

concerns of cloud infrastructure provisioning and

configuration management is using Terraform for

provisioning and Ansible for provisioning.

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

22

Terraform excels in provisioning through a declarative

and uniform approach to defining cloud resources

across different vendors (Herrera-Cubides et al.,

2019). This benefits multi-cloud SaaS solutions by

lowering deployment overhead to various cloud

providers while also providing a readable source of

truth of all infrastructure across all used cloud

providers (Lessard, 2014). Furthermore, the

provisioning/ updating of each resource – such as

when one resource is dependent on the other – is

delegated to Terraform. This also means that ensuring

idempotency also rests on Terraform itself. Therefore,

the user is only responsible for defining each resource.

In this way, Infrastructure Provisioning IaC tools can

be used to automate provisioning, update gracefully,

and destroy cloud infrastructure (Gajakosh &

Takalikar, 2013)

Fig. 8 Terraform succeeds in managing the state of

infrastructure.

One-way Ansible excels in configuration

management through a procedural approach in

defining how infrastructure should be configured.

This benefits multi-cloud SaaS by making the

workflow of automated configuration management

visible through this procedural approach – it

becomes easier to debug automation issues for

different types of infrastructure. In addition,

configuration Management IaC tools inherently

make it easier to define a process of steps compared

to Infrastructure Provisioning IaC tools. Like

Terraform, Ansible also provides built-in checks

for idempotency, but Ansible also gives the user

the power to define specific reviews for each

process step. This divergence is because terraform

"understands" how to check for idempotency for

each cloud vendor it deals with; therefore, the user

can delegate such responsibility to Terraform. The

same cannot be said for idempotency when

configuring software – the user cannot expect

Ansible to "understand" the software is configured.

Finally, like most Configuration Management

tools, Ansible makes it easy to run the same

procedure for multiple hosts or conditionally run

steps of each process for hosts. In this way,

Configuration Management IaC tools allow users

to manage infrastructure better to set up and

upgrade software and other higher-level systems

within the infrastructure (Hummer et al., 2013).

Fig 9. Ansible excels in enforcing the desired state

of software in many machines via user-defined

procedures.

CONCLUSION

Hosting an Enterprise SaaS on a multi-cloud is

always a better option. It reduces the risks and costs

of hosting while improving the end users'

efficiency, performance, and experience. However,

it does suffer from security, monitoring, and

governance challenges. However, automation can

help in optimizing the overall cost. The findings

also suggest that using IaC can be highly beneficial

to provisioning standard infrastructure across

multi-cloud platforms easily and reliably using

scripts and tools.

DECLARATION OF COMPETING

INTEREST

The authors declare that they have no known

competing financial interests or personal

relationships that could have appeared to influence

the work reported in this paper.

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

23

REFERENCES

Achar, S. (2016). Software as a Service (SaaS) as Cloud

Computing: Security and Risk vs. Technological

Complexity. Engineering International, 4(2), 79-

88. https://doi.org/10.18034/ei.v4i2.633

Achar, S. (2017). Asthma Patients’ Cloud-Based Health

Tracking and Monitoring System in Designed

Flashpoint. Malaysian Journal of Medical and

Biological Research, 4(2), 159-166.

https://doi.org/10.18034/mjmbr.v4i2.648

Achar, S. (2018). Security of Accounting Data in Cloud

Computing: A Conceptual Review. Asian

Accounting and Auditing Advancement, 9(1), 60–

72. https://4ajournal.com/article/view/70

Achar, S. (2019). Early Consequences Regarding the

Impact of Artificial Intelligence on International

Trade. American Journal of Trade and Policy, 6(3),

119-126. https://doi.org/10.18034/ajtp.v6i3.634

Atkins, N.,Jr, Mitchell, J. W., Romanova, E. V., Morgan,

D. J., Cominski, T. P., Ecker, J. L., . . . Gillette, M.

U. (2010). Circadian integration of glutamatergic

signals by little SAAS in novel suprachiasmatic

circuits. PLoS One, 5(9)

https://doi.org/10.1371/journal.pone.0012612

Burkon, L. (2013). Quality of service attributes for

software as a service. Journal of Systems

Integration, 4(3), 38-47.

Fadziso, T., Adusumalli, H. P., & Pasupuleti, M. B. (2018).

Cloud of Things and Interworking IoT Platform:

Strategy and Execution Overviews. Asian Journal

of Applied Science and Engineering, 7, 85–92.

Retrieved from

https://upright.pub/index.php/ajase/article/view/63

Gajakosh, S., & Takalikar, M. (2013). Multitenant software

as a service: Application development

approach. International Journal of Advanced

Computer Research, 3(3), 159-163.

Herrera-Cubides, J., Gelvez-García, N. Y., & López-

Sarmiento, D. A. (2019). LMS SaaS: Una

alternativa para la formación virtual. [SaaS LMS:

An alternative to the virtual training] Ingeniare:

Revista Chilena De Ingenieria, 27(1), 164-179.

Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T. (2013).

Testing Idempotence for Infrastructure as Code. In:

Eyers, D., Schwan, K. (eds) Middleware 2013.

Middleware 2013. Lecture Notes in Computer

Science, vol 8275. Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-45065-5_19

Imam, M. O., Yousif, A., & Bashir, M. B. (2016). A

proposed software as a service (SaaS) toolkit for

cloud multi-tenancy. Computer Engineering and

Applications Journal, 5(2), 37-46.

Lessard, L. (2014). Designing and managing value co-

creation in KIBS engagements. Technology

Innovation Management Review, 4(7), 36-43.

Li, D., Liu, C., & Liu, B. (2011). H-RBAC: A hierarchical

access control model for SaaS

systems. International Journal of Modern

Education and Computer Science, 3(5), 47-53.

Odun-Ayo, I., Geteloma, V., Falade, A., Oyom, P., &

Williams Toro-Abasi. (2019). A systematic

mapping study of utility-driven models and

mechanisms for interclouds or federations. Journal

of Physics: Conference Series, 1378(4).

https://doi.org/10.1088/1742-6596/1378/4/042008

Palos-Sánchez, P. R., Arenas-Márquez, F.,J., & Aguayo-

Camacho, M. (2017). La adopción de la tecnología

cloud computing (SaaS): Efectos de la complejidad

tecnológica vs formación y soporte. [The adoption

of cloud computing technology (SaaS): effects of

technological complexity vs training and

support] Revista Ibérica De Sistemas e Tecnologias

De Informação, (22), 89-105.

https://doi.org/10.17013/risti.22.89-105

Pasupuleti, M. B., Miah, M. S., & Adusumalli, H. P.

(2019). IoT for Future Technology Augmentation:

A Radical Approach. Engineering

International, 7(2), 105-116.

https://doi.org/10.18034/ei.v7i2.601

Rahman, M. M., Pasupuleti, M. B., & Adusumalli, H. P.

(2019). Advanced Metering Infrastructure Data:

Overviews for the Big Data Framework. ABC

Research Alert, 7(3), 159-168.

https://doi.org/10.18034/abcra.v7i3.602

Venkatachalam, N., Fielt, E., Rosemann, M., & Mathews,

S. (2014). Small and medium enterprises using

software as a service: Exploring the different roles

of intermediaries. Australasian Journal of

Information Systems, 18(3).

https://doi.org/10.3127/ajis.v18i3.1101

Villarino, T. G., & Orea, D. G. (2012). IMPRO4: UNA

APLICACIÓN DE TIPO SAAS (SOFTWARE AS

A SERVICE) PARA LA EVALUACIÓN DE

IMPACTO AMBIENTAL/IMPRO4 - SAAS FOR

ENVIRONMENTAL IMPACT ASSESSMENT:

SCIENCE AND ENGINEERING

NEOGRANADINA. Ciencia e Ingeniería

Neogranadina, 22(2), 179-195.

Yadin, A. (2012). Enhancing information systems students'

soft skill - a case study. International Journal of

Modern Education and Computer Science, 4(10),

17-25.

--0--

https://doi.org/10.18034/ei.v4i2.633
https://doi.org/10.18034/mjmbr.v4i2.648
https://4ajournal.com/article/view/70
https://doi.org/10.18034/ajtp.v6i3.634
https://doi.org/10.1371/journal.pone.0012612
https://upright.pub/index.php/ajase/article/view/63
https://doi.org/10.1007/978-3-642-45065-5_19
https://doi.org/10.1088/1742-6596/1378/4/042008
https://doi.org/10.17013/risti.22.89-105
https://doi.org/10.18034/ei.v7i2.601
https://doi.org/10.18034/abcra.v7i3.602
https://doi.org/10.3127/ajis.v18i3.1101

