

https://upright.pub/index.php/ijrstp/
Original Contribution

Reward Redistribution as Align-RUDDER: Learning from a Few
Demonstrations

Takudzwa Fadziso1֎

Keywords: Reward Redistribution, Align-RUDDER, Learning from Demonstrations

International Journal of Reciprocal Symmetry and Theoretical Physics

Vol. 7, Issue 1, 2020 [Pages 1-8]

Reinforcement to handle difficult tasks with sparse and delayed rewards, learning algorithms

demand a large number of samples. Complex tasks are frequently broken down into sub-tasks in a

hierarchical manner. A step in the Q-function corresponds to the completion of a sub-task in which

the return expectation rises. RUDDER was created to identify these phases and then shift rewards

to them, resulting in rapid rewards when sub-tasks are completed. Learning is significantly

accelerated since the problem of delayed rewards is alleviated. Current exploration strategies, such

as those used in RUDDER, struggle to find episodes with large rewards when dealing with difficult

tasks. As a result, we presume that high-reward episodes are presented as demonstrations and do

not need to be found through exploration. The number of demonstrations is typically low, and

RUDDER's LSTM model does not learn effectively as a deep learning method. As a result, we

present Align-RUDDER, which is RUDDER with two major changes. First, Align-RUDDER

implies that high-reward episodes are presented as demos, replacing RUDDER's safe exploration

and lesson replay buffer. Second, we substitute RUDDER's LSTM model with a profile model

derived from multiple demonstration sequence alignment. Bioinformatics has shown that profile

models may be built with as little as two demos. Align-RUDDER inherits the concept of reward

redistribution, which lowers the time between incentives and hence accelerates learning. On

complex artificial tasks with delayed rewards and limited demonstrations, Align-RUDDER

surpasses competitors. Align-RUDDER can mine a diamond on the MineCraft obtain Diamond

assignment, but only infrequently.

INTRODUCTION

An overview of Align-RUDDER1, our new approach.

Complex tasks with sparse and delayed rewards are

difficult for reinforcement learning systems to learn

(Sutton and Barto, 2018; Rahmandad et al., 2009;

Luoma et al., 2017). RUDDER (Arjona-Medina et al.,

2019) has demonstrated its ability to learn sparse and

delayed rewards. RUDDER requires high-reward

episodes in order to store them in its lessons replay

buffer. Current exploration strategies, on the other hand,

struggle to find episodes with large rewards for complex

activities.

1Institute of Lifelong Learning and Development Studies, Chinhoyi University of Technology, ZIMBABWE
֎takudzwafadziso@gmail.com

Teachers, role models, and prototypes provide humans

and animals with high reward events. We suppose that

high-reward events are used as demonstrations in this

setting. As a result, the demos can take the role of

RUDDER's safe exploration and lesson replay buffer.

Demonstrating is time-consuming for humans and time-

consuming for automated exploration tactics, thus there

are usually only a handful available. RUDDER's LSTM,

on the other hand, as a deep learning method,

necessitates a large number of samples. As a result, we

substitute a profile model derived from multiple

sequence alignment of the demonstrations for

https://upright.pub/index.php/ijrstp/
mailto:takudzwafadziso@gmail.com

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

2

RUDDER's LSTM. In bioinformatics, profile models

are used to score novel sequences based on their

sequence similarity to the matched sequences (Ahmed,

2021; Ganapathy et al., 2021; Manojkumar et al.,

2021; Sharma et al., 2021; Hussain et al., 2021; Raya

et al., 2021; Panchal et al., 2021; Bynagari & Ahmed,

2021). The LSTM in RUDDER forecasts an episode's

return based on an action-state sub-sequence.

Objectives of the Study

This study is aimed at the LSTM prediction which is

substituted with the score of this sub-sequence if it is

aligned to the profile model in the new approach (Align-

RUDDER) adopted in this study. The LSTM predictions

was used for return decomposition and reward

redistribution in the RUDDER implementation by

exploiting the difference of consecutive forecasts.

Align-Rudder uses the difference in alignment scores

for subsequent sub-sequences to perform return

decomposition and reward redistribution.

LITERATURE REVIEW

Temporal difference and Monte Carlo versus Align-

RUDDER

As demos, we anticipate having high reward episodes.

Through alignment approaches, Align-RUDDER

leverages these episodes to discover state-actions

indicative of high rewards. Align-RUDDER then

redistributes incentives to these state-actions, allowing a

policy to be adjusted so that these state-actions are

achieved more frequently. As a result, the return on

investment is higher, and relevant episodes are sampled

more frequently. For delayed rewards and model-free

reinforcement learning, (I) temporal difference (TD)

suffers from vanishing information, even with eligibility

traces (Arjona-Medina et al., 2019); (II) Monte Carlo

(MC) must average over all possible futures, resulting in

high variance (Arjona-Medina et al., 2019). (Arjona-

Medina et al., 2019). Model-based approaches such as

Monte-Carlo Tree Search (MCTS) can handle delayed

and unusual rewards if models are available, as they are

for GO and chess (Silver et al., 2016; 2017).

Q-functions (action-value functions) are step

functions, as a basic understanding

A hierarchical structure made up of sub-tasks or sub-

goals distinguishes complex tasks (see first row in left

panel of Figure 1). An optimal policy's Q-function

resembles a step function. A change in return

expectation, or the expected quantity of the return or the

chance of obtaining the return, is a step in the Q-

function. Achievements, failures, completing sub-tasks,

reaching a sub-goal, or changes in the environment are

all indicated by steps. Identifying large steps is critical

for significantly speeding up learning: understanding

the large steps in the Q-function helps you to boost the

return and sample more relevant episodes.

Every state-action pair's expected return must be

predicted by a Q-function. As a result, it's likely to

produce a prediction error at some time, which could

obstruct learning (see second row in left panel of Figure

1). It is not essential to anticipate the expected return for

each state-action pair because the Q-function is largely

constant. It's enough to find important state-actions

throughout the episode and utilize them to forecast the

predicted return (see third row in left panel of Figure 1).

The LSTM network (Hochreiter and Schmidhuber,

1995; 1997a, b) is ideal for storing only relevant state-

actions in its memory cells. It only changes them when

a new relevant state-action combination arises, thus its

output remains constant until the memory cells are

refreshed. The core concept that Q-functions are step

functions motivates return decomposition and reward

redistribution to detect these phases and speed up

learning.

Redistribution of Rewards: Decomposition of Ideas

and Returns

Given an episodic Markov decision process, we

consider reward redistributions produced using return

decomposition (MDP). It is assumed that the Q-function

is a step function (blue curve in first row in right panel

of Figure 1). The steps of the Q-function are identified

using return decomposition (green arrows in right panel

Figure 1). Given the state-action sub-sequence, a

function predicts the predicted return (large red arrow in

first row in right panel of Figure 1) (LSTM in

RUDDER, alignment model in Align-RUDDER). The

prediction is broken down into individual Q-function

steps (green arrows in Figure 1). The steps are removed

by the redistributed rewards (little red arrows in the

second and third rows of the right panel of Figure 1). As

a result, the anticipated future reward is zero (blue curve

at zero in last row in right panel of Figure 1). Because

delayed incentives are no longer existent, understanding

the Q-values simplifies calculating the expected

immediate rewards (little red arrows in right panel of

Figure 1) because future rewards are zero.

Figure 1: Basic insight of RUDDER (left panel) and

reward redistribution (right panel)

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

3

Multiple sequence alignment is used to redistribute

rewards

For reward redistribution via return decomposition,

RUDDER employs an LSTM model. The difference

between two successive LSTM model predictions is the

reward redistribution. If a state-action pair improves the

return forecast, it is rewarded right away. The

redistributed reward is Rt+1 = g((s; a)0:t) g((s; a)0:t-1) using

state-action sub-sequences (s; a)0:t = (s0; a0; : : : ; st; at),

where g is an LSTM model that anticipates the return of

the episode. Because the greatest steps of the Q-function

lower the prediction error the most, the LSTM model

learns to mimic them first. As a result, the LSTM model

retrieves the relevant state-action pairs first (events). We

now use sequence alignment approaches to replace the

LSTM model with a profile model. The profile model is

the outcome of several demonstration sequence

alignment and allows fresh sequences to be aligned to it.

Both the (s; a)0:t-1 and (s; a)0:t sub-sequences are

translated to event sequences and then aligned to the

profile model. As a result, both sequences are assigned

a score S that is proportional to the function g. Rt+1 =

g((s; a)0:t) g((s; a)0:t-1) is the redistributed reward. Figure

2 shows a biological sequence alignment on the left

panel and a demonstrative alignment on the right panel.

Reward redistribution

RUDDER (Arjona-Medina et al., 2019) introduced the

notions of reward redistribution and return

decomposition, which are also essential principles in our

Align-RUDDER. Return decomposition-based reward

redistribution removes – or at least reduces – award

delays while maintaining the same optimal rules. When

employing multiple sequence alignment to develop a

reward redistribution model, Align-RUDDER is

justified by the theories of return decomposition and

reward redistribution. The principles and theory of

return decomposition and reward redistribution are

briefly review.

We consider a finite MDP defined by the 5-tuple (𝒫 =
(𝒮, 𝒜, ℛ, 𝛾) where 𝒮 and 𝒜 are sets of finite states and

actions, respectively, and ℛ is the set of bounded

rewards r. The associated random variables for a given

time step t are St, At, and Rt+1. 𝒫 also has transition-

reward distributions 𝓅(𝑆𝑡+1 = 𝑠′, 𝑅𝑡+1 = 𝑟 |𝑆𝑡 =
𝑠, 𝐴𝑡 = 𝑎), as well as a discount factor 𝛾 𝜖 (0; 1], which

we set to 𝛾 = 1. A Markov policy 𝜋(𝑎|𝑠) is the

probability of taking an action in response to a state s.

MDPs having a finite temporal horizon or MDPs with

an absorbing state are considered. 𝐺𝑡 =
 ∑ 𝛾𝑘𝑅𝑡+𝑘+1.

𝑇−𝑡
𝑘=0 is the discounted return of a sequence of

length T at time t. The Q-function for a given policy is

𝑞𝜋(𝑠, 𝑎) = 𝐸𝜋 [𝐺𝑡 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎], as is customary.

The expectation of x is𝐸𝜋 [𝑥 |𝑠, 𝑎], where the random

variable is a sequence of states, actions, and rewards

created using the transition-reward distribution p,

policy 𝜋 , and starting at (s; a). At t = 0, the goal is to

design an optimal policy 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋 𝐸𝜋 [𝐺𝑜] that

maximizes the expected return. In order to provide

stationary optimal policies, we assume that the states s

are time-aware (time t can be derived from each state).

A deterministic optimal policy 𝜋∗ exists, according to

Proposition 4.4.3 in (Puterman, 2005).

Figure 2: Left panel: Alignment of biological sequences

(triosephosphate isomerase) giving a conservation

score. Right panel: Alignment of demonstrations using

the conservation score for reward redistribution

A sequence-Markov decision process (SDP) is a

decision process with Markov transition probabilities

but no requirement for a Markov reward probability.

Return-equivalent SDPs �̌� 𝑎𝑛𝑑 𝒫 with varying reward

probabilities have the same expected return at t = 0 for

each policy ӆ, while strictly return-equivalent SDPs

have the same expected return for every episode.

Return-equivalent SDPs have the same optimal policies

since the expected return at t = 0 is the same. A

sequence-Markov decision process (SDP) is a decision

process with Markov transition probabilities but no

requirement for a Markov reward probability. Return-

equivalent SDPs �̌� 𝑎𝑛𝑑 𝒫 with varying reward

probabilities have the same expected return at t = 0 for

each policy, while strictly return-equivalent SDPs have

the same expected return for every episode. Return-

equivalent SDPs have the same optimal policies since

the expected return at t = 0 is the same.

Sequence Alignment Rewards Redistribution

Sequence alignment is a technique used in

bioinformatics to find similarities between biological

sequences and establish their evolutionary relationship

(Needleman and Wunsch, 1970; Smith and Waterman,

1981; Bynagari, 2017; Bynagari, 2018; Bynagari, 2019;

Bynagari & Amin, 2019; Bynagari & Fadziso, 2018;

Manavalan, 2016; Manavalan, 2018; Manavalan,

2019a; Manavalan, 2019b; Manavalan & Bynagari,

2015; Manavalan & Chisty, 2019; Manavalan &

Donepudi, 2016). Such alignment strategies are used by

Align-RUDDER to align two or more demos with a high

return. We think that the demonstrations all follow the

same basic technique, thus they're similar and can be

grouped together. Stormo et al. (1982) found that the

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

4

alignment produces a profile model in the form of a

consensus sequence (the strategy), a frequency matrix,

or a Position-Specific Scoring Matrix (PSSM). The

difference between the scores of consecutive sub-

sequences when aligned to the profile model is the

redistributed reward of a new sequence. The new reward

redistribution strategy consists of five steps as indicated

in Figure 3: (I) Define events to turn state-action

sequence episodes into event sequences. (II) Use

Equation: 𝔰𝑖,𝑗 = 𝐼𝑛 (
𝑞𝑖𝑗

𝑃𝑖𝑃𝑗
) / 𝜆∗ to create an alignment

score mechanism that aligns relevant event with one

another. (III) Align all of the demonstrations in multiple

sequences. (IV) Calculate the profile model and PSSM

according to Equation ∑ 𝑃𝑖𝑃𝑗
𝑛,𝑛
𝑖=1,𝑗=1 exp (𝜆𝔰𝑖,𝑗). (V)

Rebalance the reward: each sub-sequence 𝜏𝑡 of a new

episode 𝜏 is aligned to the profile. The redistributed

reward 𝑅𝑡+1 is proportional to be difference of scores S

based on the PSSM given in ∑ 𝑃𝑖𝑃𝑗
𝑛,𝑛
𝑖=1,𝑗=1 exp (𝜆𝔰𝑖,𝑗),

that is 𝑅𝑡+1 ∝ 𝑆(𝜏𝑡) − 𝑆(𝜏𝑡−1)

Figure 3: The five steps of Align-RUDDER’s reward

redistribution

Reward Redistribution

The profile model is used to redistribute rewards. A

sequence, 𝜏 = 𝑒𝑂:𝑇 (et is the event at position t) can be

aligned to the profile, yielding the score 𝑆(𝜏) =
 ∑ 𝔰𝑥𝑖,𝑡

𝐿
𝑡=0 , where 𝔰𝑖,𝑡 is the alignment score for event i at

location t, xt is the event at position t in the alignment,

and L is the profile length. Because there are gaps in the

alignment, L ≥ T and 𝑥𝑡 ≠ 𝑒𝑡 . If the prefix sequence of

𝜏 of length t + 1 is 𝜏𝑡 = 𝑒0:𝑡, then the payoff is

c = (S(𝜏𝑡) − S(𝜏𝑡−1) C

= g((s; a)0: t) − g((s; a)0: t − 1) ;

𝑅𝑇+2 = 𝐺𝑂
̅̅̅̅ ∑ Rt + 1

𝑇

𝑡=0

, 𝐶

=
𝐸𝑑𝑒𝑚𝑜 [𝐺𝑂

̅̅̅̅]

𝐸𝑑𝑒𝑚𝑜[∑ 𝑆 (𝜏𝑡) − 𝑆 (𝜏𝑡−1)𝑇
𝑡=0

where 𝑅𝑇+2 = 𝐺𝑂
̅̅̅̅ ∑ Rt + 1 𝑇

𝑡=0 represents the

sequence's original return, and 𝑆 (𝜏𝑡−1) = 0. C scales

Rt+1 to the range of 𝐺𝑂
̅̅̅̅ , and Edemo is the expectation over

demonstrations. With 0% expectation for

demonstrations, RT+2 is the rectification of the

redistributed reward (Arjona-Medina et al., 2019).

𝐸𝑑𝑒𝑚𝑜 |𝑅𝑇+2| = 0. Since 𝜏𝑡 = 𝑒0:𝑡 and 𝑒𝑡 = 𝑓(𝑠𝑡 , 𝑎𝑡),
we can set 𝑔((𝑠, 𝑎)𝑜:𝑡) = 𝑆(𝜏𝑡)𝐶. We ensure strict

return equivalence, since 𝐺𝑂 = ∑ Rt + 1𝑇+1
𝑡=0 = 𝐺𝑂

̅̅̅̅ .

The redistribution reward depends only on the past, that

is, 𝑅𝑡+1 = ℎ(𝑠, 𝑎)𝑜:𝑡). The profile alignment of

𝜏𝑡−1 can be extended to a profile alignment for 𝜏𝑡 for

computational efficiency, just as exact matches are

extended to high-scoring sequence pairs with the

BLAST algorithm (Altschul et al., 1990; 1997).

Experimental Methods

Align-RUDDER is compared to Behavioral Cloning

with Q-learning (BC+Q) and Deep Q-learning from

Demonstrations (DQfD) on two fake tasks with sparse

and delayed rewards and few demonstrations (Hester et

al., 2018). GAIL (Ho and Ermon, 2016), a control

system built for continuous observation spaces, failed to

solve the two simulated challenges, as it had previously

failed to solve similar problems (Reddy et al., 2020).

Then we put Align-RUDDER to the test on the difficult

MineCraft ObtainDiamond assignment, which has

episodic, so long-delayed rewards (Guss et al., 2019b).

All of the experiments use MDPs with a finite time

horizon of 𝛾 = 1 and episodic rewards.

RESULTS AND DISCUSSION

Artificial tasks I and artificial tasks II. They are

variations on the grid world rooms example (Sutton et

al., 1999), in which the MDP states are represented by

cells (locations). The states do not need to be time-aware

in our setting to ensure an MDP, but the unobserved

used-up time introduces a random influence. The grid is

divided into different rooms, each of which is connected

to the next simply by a single cell. The agent's purpose

is to attain a target with the fewest steps possible from a

starting state. Except for the first chamber, which is only

connected to the second room by a portal, it must pass

through various rooms that are connected by doors.

The agent is teleported to a fixed portal arrival cell in

the second room if it is at the portal entry cell of the first

room. The position of the portal entering cell is chosen

at random for each episode, although the portal arrival

cell remains constant. The position of the portal entry

cell is specified in the initial room's state. The portal was

created to avoid the task being solved solely via BC

startup. It ensures that travelling to the portal entry cells

is learned, even if they are not visible in demonstrations.

If the agent stays on the grid, it can travel up, down, left,

and right at any time. Except for teleportation, all state

transitions are random. After T = 200 times, an episode

comes to a close steps. If the agent successfully reaches

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

5

the intended area, the following stage is for it to enter an

absorbing condition. There it will remain until T = 200,

with no additional awards.

The five steps of Align-reward RUDDER's

redistribution are then described:

(1) Events correspond to clusters of states derived using

affinity propagation (Frey and Dueck, 2007), which uses

the successor representation of states based on

demonstrations as a measure of similarity.

(2) Equation: ∑ 𝑃𝑖𝑃𝑗
𝑛,𝑛
𝑖=1,𝑗=1 exp (𝜆𝔰𝑖,𝑗), is used to get the

scoring matrix, with ∈ = 0 and all off-diagonal values

of the scoring matrix set to 1.

(3) For the MSA of the demos, ClustalW is used with all

gap penalties set to zero and no biological options.

(4) As seen in the MSA provides a profile model and a

PSSM.

(5) The agent's generated sequences are mapped to event

sequences according to step (1). Reward is reallocated

using the PSSM from step 5 and differences in profile

alignment scores of consecutive sub-sequences

according to Equation:

𝑞𝜋 (𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) = 𝑞−𝜋 (𝑠𝑡, 𝑎𝑡) −

 𝐸𝑠𝑡−1, 𝑎𝑡−1
|𝑞−𝜋𝑠𝑡−1, 𝑎𝑡−1| 𝑠𝑡,⌋ = 𝑞−𝜋(𝑠𝑡, 𝑎𝑡) − 𝜓𝜋 (𝑠𝑡,)

Sub-tasks

Sub-tasks, which are alignment places that earn a high

redistributed reward, are implicitly defined by reward

redistribution (doors and portal arrival). The sub-tasks

divide the Q-table into sub-tables, each of which

corresponds to a sub-agent. When opposed to a single

Q-table, defining sub-tasks has no effect on learning in

the tabular scenario.

All of the approaches that were compared learned a Q-

table and used a -greedy policy with a ratio of ∈ = 0.2 .
Behavioral cloning is used to set up the Q-table (BC).

The state-action pairings that are not initialized because

they are not visited in the demonstrations are given an

optimistic start by selecting a sample from a normal

distribution inferred from the demonstration returns

(avoiding equal Q-values). RUDDER's Q-value

estimation with correction is used by Align-RUDDER

to learn the Q-table (Type A variant ii from above). Q-

learning is used to learn a Q-table for BC+Q and DQfD.

Grid search was used to select hyperparameters, and

each approach took the same amount of time.

Performance is determined by the number of episodes

required to produce 80% of the average return on the

demos for various numbers of demonstrations. The

significance of performance differences between Align-

RUDDER and the other approaches is determined using

the Wilcoxon rank-sum test.

The environment for Task (I) is a 12 x 12 gridworld with

four rooms. The goal is in room #4, while the starting

point is in room #1, which includes 20 portal access

points. The gateway entry is noted in the state for each

episode. Figure 4 depicts the number of episodes

required to get 80% of the average demonstration

reward for various numbers of demos. Over 100 trials,

the results are averaged. Align-RUDDER surpasses all

other approaches, especially when there are few

demonstrations (p-values of <10-10 for up to ten demos).

Figure 4: Comparison of Align-RUDDER and other

methods on Task (I) (left) and Task (II) (right)

The environment for Task (II) is a 12 x 24 gridworld

with eight rooms. The goal is in room #8, while the

starting point is in room #1, which includes 20 portal

access points. The findings are shown in Figure 4, with

the same parameters and evaluation criteria as Task 1.

(I). Align-RUDDER surpasses all other approaches,

especially when there are few demonstrations (p-values

of <10-26 for up to 10 demos). No pure learning method

(sub-goals are also learned) has yet to mine a diamond,

to the best of our knowledge (Scheller et al., 2020).

Demonstrations from human players are included in the

dataset. The amount of demonstrations, however, is

insufficient to immediately learn a policy that can mine

a diamond from them (out of 117 demonstrations, 67

mined a diamond).

Align-five RUDDER's phases are implemented as

follows:

(1) There are two parts to a state: a visual input and an

inventory (including the equip state). Both sections are

scaled to have the same amount of data, such as the same

number of components and variance. According to

Arjona-Medina et al (2019) explaining Away Problem,"

we cluster the differences of consecutive states. We

combined minor clusters and deleted very big clusters,

leaving roughly 20 clusters corresponding to events

characterized by inventory changes. Finally,

demonstrations are assigned to event sequences.

(2) The equation below is used to calculate the score

matrix.

𝑞𝜋 (𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) = 𝑞−𝜋 (𝑠𝑡, 𝑎𝑡) −

 𝐸𝑠𝑡−1, 𝑎𝑡−1
|𝑞−𝜋𝑠𝑡−1, 𝑎𝑡−1| 𝑠𝑡,⌋ = 𝑞−𝜋(𝑠𝑡, 𝑎𝑡) − 𝜓𝜋 (𝑠𝑡,)

(3) ClustalW aligns the ten shortest demos that obtained

a diamond, with gap penalties set to zero and no

biological alternatives.

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

6

(4) From the multiple alignment, a profile model and a

PSSM are extracted.

(5) According to Equation:

c = (S(𝜏𝑡) − S(𝜏𝑡−1) C

= g((s; a)0: t) − g((s; a)0: t − 1) ;

redistributed reward is based on the variations in profile

alignment scores of consecutive sub-sequences. Using

the PSSM from the previous step (4).

Sub-goals are defined based on the dispersion of

rewards. Profile model positions that achieve an average

redistributed reward beyond a threshold for

demonstrations are recognized as sub-goals. Sub-

sequences of demonstration between sub-goals are

regarded demonstrations for the sub-tasks. To decide

whether a sub-goal is met, the agent generates new sub-

sequences that are aligned to the profile model. Because

the redistributed reward across sub-goals is granted at

the end of the sub-sequence, the sub-tasks receive

episodic reward as well. Figure 5 shows how reward

redistribution is used to identify sub-goals. Behavioral

Cloning is used to pre-train sub-agents on the sub-task

demos, and then Proximal Policy Optimization (PPO) is

used to train them in the environment (Schulman et al.,

2018).

Figure 5: Example of alignment and reward

redistribution for demonstrations of ObtainDiamond.

Thresholding the redistributed reward identifies sub-

goals

Our primary agent is capable of performing all tasks, as

well as executing sub-agents and learning from the

redistributed reward (return-equivalent MDP). The

primary agent is started by executing sub-agents in

accordance with the alignment, but it is free to diverge

from this technique. The Appendix contains more

information on architectures, hyperparamters, and other

technical specifics. With just ten demonstrations, Align-

RUDDER can learn how to mine diamonds. When the

31 extracted sub-tasks from the ObtainDiamond

environment are considered, a diamond is obtained in

0.1 percent of the cases. To put this proportion into

perspective, consider a 0.5 chance of success for each

extracted sub-task, which already necessitates a highly

trained agent. The success rate for mining the diamond

as a result would be around 4:66 1010.

CONCLUSION

From a few examples, Align-RUDDER can learn to

accomplish exceedingly complicated problems with

delayed and sparse rewards. Align-RUDDER is based

on the reward redistribution theory, which ensures that

optimal policies are maintained while the reward delay

is significantly decreased. Alignment techniques from

bioinformatics are used in reward redistribution. With

few demos, Align- RUDDER surpasses competitors on

artificial tasks. Align-RUDDER was able to mine a

diamond in 0.1 percent of the MineCraft

ObtainDiamond tasks.

REFERENCES

Ahmed, A.A.A. (2021). Event Ticketing Accounting

Information System using RFID within the COVID-

19 Fitness Etiquettes. Academia Letters, Article

1379. https://doi.org/10.20935/AL1379

Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and

Lipman, D. J. 1990. Basic local alignment search

tool. J. Molec. Biol., 214:403–410, 1990.

Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J.,

Zhang, Z., Miller, W. and Lipman D. J. 1997. Gapped

BLAST and PSI-BLAST: a new generation of protein

database search programs. Nucleic Acids Research,

25(17):3389–3402, 1997. doi:

10.1093/nar/25.17.3389.

Antonoglou, I., V. Panneershelvam, M. Lanctot, S. Dieleman,

D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T.

P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel,

and Hassabis. Mastering the game of Go with deep

neural networks and tree search. Nature,

529(7587):484–489. doi:10.1038/nature16961.

Arjona-Medina, J. A., Gillhofer, M., Widrich, M., Unterthiner,

T., Brandstetter, J. and Hochreiter, S. 2019.

RUDDER: return decomposition for delayed

rewards. In Advances in Neural Information

Processing Systems 32, pp. 13566–13577.

Bynagari, N. B. & Ahmed, A. A. A. (2021). Anti-Money

Laundering Recognition through the Gradient

Boosting Classifier. Academy of Accounting and

Financial Studies Journal, 25(5), 1–11.

https://doi.org/10.5281/zenodo.5523918

Bynagari, N. B. (2017). Prediction of Human Population

Responses to Toxic Compounds by a Collaborative

Competition. Asian Journal of Humanity, Art and

Literature, 4(2), 147-156.

https://doi.org/10.18034/ajhal.v4i2.577

Bynagari, N. B. (2018). On the ChEMBL Platform, a Large-

scale Evaluation of Machine Learning Algorithms for

Drug Target Prediction. Asian Journal of Applied

https://doi.org/10.20935/AL1379
https://doi.org/10.5281/zenodo.5523918
https://doi.org/10.18034/ajhal.v4i2.577

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

7

Science and Engineering, 7, 53–64. Retrieved from

https://upright.pub/index.php/ajase/article/view/31

Bynagari, N. B. (2019). GANs Trained by a Two Time-Scale

Update Rule Converge to a Local Nash

Equilibrium. Asian Journal of Applied Science and

Engineering, 8, 25–34. Retrieved from

https://upright.pub/index.php/ajase/article/view/32

Bynagari, N. B., & Amin, R. (2019). Information Acquisition

Driven by Reinforcement in Non-Deterministic

Environments. American Journal of Trade and

Policy, 6(3), 107-112.

https://doi.org/10.18034/ajtp.v6i3.569

Bynagari, N. B., & Fadziso, T. (2018). Theoretical

Approaches of Machine Learning to

Schizophrenia. Engineering International, 6(2), 155-

168. https://doi.org/10.18034/ei.v6i2.568

Ganapathy, A., Vadlamudi, S., Ahmed, A. A. A., Hossain,

M. S., Islam, M. A. (2021). HTML Content and

Cascading Tree Sheets: Overview of Improving

Web Content Visualization. Turkish Online Journal

of Qualitative Inquiry, 12(3), 2428-2438.

https://doi.org/10.5281/zenodo.5522159

Hester, T., M. Vecerík, O. Pietquin, M. Lanctot, T. Schaul, B.

Piot, D. Horgan, J. Quan, A. Sendonaris, I. Osband,

G. Dulac-Arnold, J. Agapiou, J. Z. Leibo, and A.

Gruslys. 2018. Deep q-learning from demonstrations.

In The Thirty-Second AAAI Conference on Artificial

Intelligence (AAAI-18). Association for the

Advancement of Artificial Intelligence, 2018.

Ho J. and Ermon S. 2016. Generative adversarial imitation

learning. In Advances in Neural Information

Processing Systems 29, pp. 4565–4573, 2016.

Hochreiter S. and Schmidhuber J. 1995. Long short-term

memory. Technical Report FKI-207-95, Fakultätfür

Informatik, Technische Universität München, 1995.

Hochreiter S. and Schmidhuber J. 1997a. Long short-term

memory. Neural Comput., 9(8):1735–1780.

Hochreiter S. and Schmidhuber J. 1997b. LSTM can solve

hard long time lag problems. In M. C. Mozer,

Hussain, S., Ahmed, A. A. A., Kurniullah, A. Z., Ramirez-

Asis, E., Al-Awawdeh, N., Al-Shamayleh, N. J. M.,

Julca-Guerrero, F. (2021). Protection against

Letters of Credit Fraud. Journal of Legal, Ethical

and Regulatory Issues, 24(Special Issue 1), 1-11.

https://doi.org/10.5281/zenodo.5507840

Luoma, J., Ruutu, S., King, A. W. and Tikkanen H. 2017.

Time delays, competitive interdependence, and firm

performance. Strategic Management Journal,

38(3):506–525. doi: 10.1002/smj.2512.

Manavalan, M. (2016). Biclustering of Omics Data using

Rectified Factor Networks. International Journal of

Reciprocal Symmetry and Physical Sciences, 3, 1–10.

Retrieved from

https://upright.pub/index.php/ijrsps/article/view/40

Manavalan, M. (2018). Do Internals of Neural Networks Make

Sense in the Context of Hydrology?. Asian Journal of

Applied Science and Engineering, 7, 75–84. Retrieved

from

https://upright.pub/index.php/ajase/article/view/41

Manavalan, M. (2019a). P-SVM Gene Selection for

Automated Microarray Categorization. International

Journal of Reciprocal Symmetry and Physical

Sciences, 6, 1–7. Retrieved from

https://upright.pub/index.php/ijrsps/article/view/43

Manavalan, M. (2019b). Using Fuzzy Equivalence Relations

to Model Position Specificity in Sequence

Kernels. Asian Journal of Applied Science and

Engineering, 8, 51–64. Retrieved from

https://upright.pub/index.php/ajase/article/view/42

Manavalan, M., & Bynagari, N. B. (2015). A Single Long

Short-Term Memory Network can Predict Rainfall-

Runoff at Multiple Timescales. International Journal

of Reciprocal Symmetry and Physical Sciences, 2, 1–

7. Retrieved from

https://upright.pub/index.php/ijrsps/article/view/39

Manavalan, M., & Chisty, N. M. A. (2019). Visualizing the

Impact of Cyberattacks on Web-Based Transactions

on Large-Scale Data and Knowledge-Based

Systems. Engineering International, 7(2), 95-104.

https://doi.org/10.18034/ei.v7i2.578

Manavalan, M., & Donepudi, P. K. (2016). A Sample-based

Criterion for Unsupervised Learning of Complex

Models beyond Maximum Likelihood and Density

Estimation. ABC Journal of Advanced Research, 5(2),

123-130. https://doi.org/10.18034/abcjar.v5i2.581

Manojkumar, P., Suresh, M., Ahmed, A. A. A., Panchal,

H., Rajan, C. C. A., Dheepanchakkravarthy, A.,

Geetha, A., Gunapriya, B., Mann, S., & Sadasivuni,

K. K. (2021). A novel home automation distributed

server management system using Internet of

Things. International Journal of Ambient Energy,

https://doi.org/10.1080/01430750.2021.1953590

Needleman S. B. and Wunsch C. D. 1970. A general method

applicable to the search for similarities in the amino

acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443–453, 1970.

Panchal, H., Sadasivuni, K. K., Ahmed, A. A. A., Hishan,

S. S., Doranehgard, M. H., Essa, F. A., Shanmugan,

S., & Khalid, M. (2021). Graphite powder mixed

with black paint on the absorber plate of the solar

still to enhance yield: An experimental

investigation. Desalination, Volume 520.

https://doi.org/10.1016/j.desal.2021.115349

Rahmandad, H., Repenning, N. and Sterman J. 2009. Effects

of feedback delay on learning. System Dynamics

Review, 25(4):309–338. doi: 10.1002/sdr.427.

Raya, I., Kzar, H. H., Mahmoud, Z. H., Ahmed, A. A. A.,

Ibatova, A. Z., & Kianfar, E. (2021). A review of

gas sensors based on carbon nanomaterial. Carbon

Letters. Article No: 276.

https://doi.org/10.1007/s42823-021-00276-9

Reddy, S., Dragan, A. D. and. Levine S. 2020. SQIL: imitation

learning via regularized behavioral cloning. ArXiv,

2020. Eighth International Conference on Learning

Representations (ICLR).

Scheller, C., Y. Schraner, and M. Vogel. 2020. Sample

efficient reinforcement learning through learning

from demonstrations in Minecraft. arXiv,

abs/2003.06066, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and

Klimov O. 2018. Proximal policy optimization

algorithms. ArXiv, 2018.

Sharma, D. K., Chakravarthi, D. S., Shaikh, A. A., Ahmed,

A. A. A., Jaiswal, S., Naved, M. (2021). The aspect

https://upright.pub/index.php/ajase/article/view/31
https://upright.pub/index.php/ajase/article/view/32
https://doi.org/10.18034/ajtp.v6i3.569
https://doi.org/10.18034/ei.v6i2.568
https://doi.org/10.5281/zenodo.5522159
https://doi.org/10.5281/zenodo.5507840
https://upright.pub/index.php/ijrsps/article/view/40
https://upright.pub/index.php/ajase/article/view/41
https://upright.pub/index.php/ijrsps/article/view/43
https://upright.pub/index.php/ajase/article/view/42
https://upright.pub/index.php/ijrsps/article/view/39
https://doi.org/10.18034/ei.v7i2.578
https://doi.org/10.18034/abcjar.v5i2.581
https://doi.org/10.1080/01430750.2021.1953590
https://doi.org/10.1016/j.desal.2021.115349
https://doi.org/10.1007/s42823-021-00276-9

International Journal of Reciprocal Symmetry and Theoretical Physics [ISSN 2308-0809]

8

of vast data management problem in healthcare

sector and implementation of cloud computing

technique. Materials Today: Proceedings.

https://doi.org/10.1016/j.matpr.2021.07.388

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G.

van den Driessche, J. Schrittwieser, Frey B. J. and

Dueck D. 2007. Clustering by passing messages

between data points. Science, 315(5814): 972–976,

2007. doi: 10.1126/science.1136800.

Smith T. F. and Waterman M. S. 1981. Identification of

common molecular subsequences. Journal of

Molecular Biology, 147(1):195–197, 1981

Stormo, G. D., Schneider, T. D., Gold, L. and Ehrenfeucht A.

1982. Use of the ‘Perceptron’ algorithm to distinguish

translational initiation sites in E. coli. Nucleic Acids

Research, 10(9):2997–3011, 1982.

Sutton R. S. and Barto A. G. 2018. Reinforcement Learning:

An Introduction. MIT Press, Cambridge, MA, 2

edition.

Sutton, R. S., Precup, D. and Singh S. P. 1999. Between MDPs

and Semi-MDPs: A framework for temporal

abstraction in reinforcement learning. Artificial

Intelligence, 112(1-2):181–211, 1999.

--0--

https://doi.org/10.1016/j.matpr.2021.07.388

