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Reinforcement to handle difficult tasks with sparse and delayed rewards, learning algorithms 

demand a large number of samples. Complex tasks are frequently broken down into sub-tasks in a 

hierarchical manner. A step in the Q-function corresponds to the completion of a sub-task in which 

the return expectation rises. RUDDER was created to identify these phases and then shift rewards 

to them, resulting in rapid rewards when sub-tasks are completed. Learning is significantly 

accelerated since the problem of delayed rewards is alleviated. Current exploration strategies, such 

as those used in RUDDER, struggle to find episodes with large rewards when dealing with difficult 

tasks. As a result, we presume that high-reward episodes are presented as demonstrations and do 

not need to be found through exploration. The number of demonstrations is typically low, and 

RUDDER's LSTM model does not learn effectively as a deep learning method. As a result, we 

present Align-RUDDER, which is RUDDER with two major changes. First, Align-RUDDER 

implies that high-reward episodes are presented as demos, replacing RUDDER's safe exploration 

and lesson replay buffer. Second, we substitute RUDDER's LSTM model with a profile model 

derived from multiple demonstration sequence alignment. Bioinformatics has shown that profile 

models may be built with as little as two demos. Align-RUDDER inherits the concept of reward 

redistribution, which lowers the time between incentives and hence accelerates learning. On 

complex artificial tasks with delayed rewards and limited demonstrations, Align-RUDDER 

surpasses competitors. Align-RUDDER can mine a diamond on the MineCraft obtain Diamond 

assignment, but only infrequently.  

 

 

 

INTRODUCTION 
 

An overview of Align-RUDDER1, our new approach. 

Complex tasks with sparse and delayed rewards are 

difficult for reinforcement learning systems to learn 

(Sutton and Barto, 2018; Rahmandad et al., 2009; 

Luoma et al., 2017). RUDDER (Arjona-Medina et al., 

2019) has demonstrated its ability to learn sparse and 

delayed rewards. RUDDER requires high-reward 

episodes in order to store them in its lessons replay 

buffer. Current exploration strategies, on the other hand, 

struggle to find episodes with large rewards for complex 

activities.  

                                                      
1Institute of Lifelong Learning and Development Studies, Chinhoyi University of Technology, ZIMBABWE  
֎takudzwafadziso@gmail.com   

 

Teachers, role models, and prototypes provide humans 

and animals with high reward events. We suppose that 

high-reward events are used as demonstrations in this 

setting. As a result, the demos can take the role of 

RUDDER's safe exploration and lesson replay buffer. 

Demonstrating is time-consuming for humans and time-

consuming for automated exploration tactics, thus there 

are usually only a handful available. RUDDER's LSTM, 

on the other hand, as a deep learning method, 

necessitates a large number of samples. As a result, we 

substitute a profile model derived from multiple 

sequence alignment of the demonstrations for 
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RUDDER's LSTM. In bioinformatics, profile models 

are used to score novel sequences based on their 

sequence similarity to the matched sequences (Ahmed, 

2021; Ganapathy et al., 2021; Manojkumar et al., 

2021; Sharma et al., 2021; Hussain et al., 2021; Raya 

et al., 2021; Panchal et al., 2021; Bynagari & Ahmed, 

2021). The LSTM in RUDDER forecasts an episode's 

return based on an action-state sub-sequence. 

 

Objectives of the Study 

 

This study is aimed at the LSTM prediction which is 

substituted with the score of this sub-sequence if it is 

aligned to the profile model in the new approach (Align-

RUDDER) adopted in this study. The LSTM predictions 

was used for return decomposition and reward 

redistribution in the RUDDER implementation by 

exploiting the difference of consecutive forecasts. 

Align-Rudder uses the difference in alignment scores 

for subsequent sub-sequences to perform return 

decomposition and reward redistribution. 

 

LITERATURE REVIEW 
 

Temporal difference and Monte Carlo versus Align-

RUDDER 

 

As demos, we anticipate having high reward episodes. 

Through alignment approaches, Align-RUDDER 

leverages these episodes to discover state-actions 

indicative of high rewards. Align-RUDDER then 

redistributes incentives to these state-actions, allowing a 

policy to be adjusted so that these state-actions are 

achieved more frequently.  As a result, the return on 

investment is higher, and relevant episodes are sampled 

more frequently. For delayed rewards and model-free 

reinforcement learning, (I) temporal difference (TD) 

suffers from vanishing information, even with eligibility 

traces (Arjona-Medina et al., 2019); (II) Monte Carlo 

(MC) must average over all possible futures, resulting in 

high variance (Arjona-Medina et al., 2019). (Arjona-

Medina et al., 2019). Model-based approaches such as 

Monte-Carlo Tree Search (MCTS) can handle delayed 

and unusual rewards if models are available, as they are 

for GO and chess (Silver et al., 2016; 2017). 

 

Q-functions (action-value functions) are step 

functions, as a basic understanding 

 

A hierarchical structure made up of sub-tasks or sub-

goals distinguishes complex tasks (see first row in left 

panel of Figure 1). An optimal policy's Q-function 

resembles a step function. A change in return 

expectation, or the expected quantity of the return or the 

chance of obtaining the return, is a step in the Q-

function. Achievements, failures, completing sub-tasks, 

reaching a sub-goal, or changes in the environment are 

all indicated by steps. Identifying large steps is critical 

for significantly speeding up learning: understanding 

the large steps in the Q-function helps you to boost the 

return and sample more relevant episodes. 

Every state-action pair's expected return must be 

predicted by a Q-function. As a result, it's likely to 

produce a prediction error at some time, which could 

obstruct learning (see second row in left panel of Figure 

1). It is not essential to anticipate the expected return for 

each state-action pair because the Q-function is largely 

constant. It's enough to find important state-actions 

throughout the episode and utilize them to forecast the 

predicted return (see third row in left panel of Figure 1). 

The LSTM network (Hochreiter and Schmidhuber, 

1995; 1997a, b) is ideal for storing only relevant state-

actions in its memory cells. It only changes them when 

a new relevant state-action combination arises, thus its 

output remains constant until the memory cells are 

refreshed. The core concept that Q-functions are step 

functions motivates return decomposition and reward 

redistribution to detect these phases and speed up 

learning. 

 

Redistribution of Rewards: Decomposition of Ideas 

and Returns 

 

Given an episodic Markov decision process, we 

consider reward redistributions produced using return 

decomposition (MDP). It is assumed that the Q-function 

is a step function (blue curve in first row in right panel 

of Figure 1). The steps of the Q-function are identified 

using return decomposition (green arrows in right panel 

Figure 1). Given the state-action sub-sequence, a 

function predicts the predicted return (large red arrow in 

first row in right panel of Figure 1) (LSTM in 

RUDDER, alignment model in Align-RUDDER). The 

prediction is broken down into individual Q-function 

steps (green arrows in Figure 1). The steps are removed 

by the redistributed rewards (little red arrows in the 

second and third rows of the right panel of Figure 1). As 

a result, the anticipated future reward is zero (blue curve 

at zero in last row in right panel of Figure 1). Because 

delayed incentives are no longer existent, understanding 

the Q-values simplifies calculating the expected 

immediate rewards (little red arrows in right panel of 

Figure 1) because future rewards are zero. 

 

 
Figure 1: Basic insight of RUDDER (left panel) and 

reward redistribution (right panel) 
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Multiple sequence alignment is used to redistribute 

rewards 

 

For reward redistribution via return decomposition, 

RUDDER employs an LSTM model. The difference 

between two successive LSTM model predictions is the 

reward redistribution. If a state-action pair improves the 

return forecast, it is rewarded right away. The 

redistributed reward is Rt+1 = g((s; a)0:t) g((s; a)0:t-1) using 

state-action sub-sequences (s; a)0:t = (s0; a0; : : : ; st; at), 

where g is an LSTM model that anticipates the return of 

the episode. Because the greatest steps of the Q-function 

lower the prediction error the most, the LSTM model 

learns to mimic them first. As a result, the LSTM model 

retrieves the relevant state-action pairs first (events). We 

now use sequence alignment approaches to replace the 

LSTM model with a profile model. The profile model is 

the outcome of several demonstration sequence 

alignment and allows fresh sequences to be aligned to it. 

Both the (s; a)0:t-1 and (s; a)0:t sub-sequences are 

translated to event sequences and then aligned to the 

profile model. As a result, both sequences are assigned 

a score S that is proportional to the function g. Rt+1 = 

g((s; a)0:t) g((s; a)0:t-1) is the redistributed reward. Figure 

2 shows a biological sequence alignment on the left 

panel and a demonstrative alignment on the right panel. 

 

Reward redistribution 

 

RUDDER (Arjona-Medina et al., 2019) introduced the 

notions of reward redistribution and return 

decomposition, which are also essential principles in our 

Align-RUDDER. Return decomposition-based reward 

redistribution removes – or at least reduces – award 

delays while maintaining the same optimal rules. When 

employing multiple sequence alignment to develop a 

reward redistribution model, Align-RUDDER is 

justified by the theories of return decomposition and 

reward redistribution. The principles and theory of 

return decomposition and reward redistribution are 

briefly review. 

 

We consider a finite MDP defined by the 5-tuple (𝒫 =
(𝒮, 𝒜, ℛ, 𝛾) where 𝒮 and 𝒜 are sets of finite states and 

actions, respectively, and ℛ is the set of bounded 

rewards r. The associated random variables for a given 

time step t are St, At, and Rt+1. 𝒫 also has transition-

reward distributions 𝓅(𝑆𝑡+1 =  𝑠′, 𝑅𝑡+1 = 𝑟 |𝑆𝑡 =
𝑠, 𝐴𝑡 = 𝑎), as well as a discount factor 𝛾 𝜖 (0;  1], which 

we set to 𝛾 = 1. A Markov policy 𝜋(𝑎|𝑠) is the 

probability of taking an action in response to a state s. 

MDPs having a finite temporal horizon or MDPs with 

an absorbing state are considered. 𝐺𝑡 =
 ∑ 𝛾𝑘𝑅𝑡+𝑘+1.

𝑇−𝑡
𝑘=0 is the discounted return of a sequence of 

length T at time t. The Q-function for a given policy is 

𝑞𝜋(𝑠, 𝑎) =  𝐸𝜋  [𝐺𝑡  |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎], as is customary. 

The expectation of x is𝐸𝜋 [𝑥 |𝑠, 𝑎], where the random 

variable is a sequence of states, actions, and rewards 

created using the transition-reward distribution p, 

policy 𝜋 , and starting at (s; a). At t = 0, the goal is to 

design an optimal policy 𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝜋  𝐸𝜋  [𝐺𝑜] that 

maximizes the expected return. In order to provide 

stationary optimal policies, we assume that the states s 

are time-aware (time t can be derived from each state). 

A deterministic optimal policy 𝜋∗ exists, according to 

Proposition 4.4.3 in (Puterman, 2005). 

 

  
Figure 2: Left panel: Alignment of biological sequences 

(triosephosphate isomerase) giving a conservation 

score. Right panel: Alignment of demonstrations using 

the conservation score for reward redistribution 

 

A sequence-Markov decision process (SDP) is a 

decision process with Markov transition probabilities 

but no requirement for a Markov reward probability. 

Return-equivalent SDPs �̌� 𝑎𝑛𝑑 𝒫 with varying reward 

probabilities have the same expected return at t = 0 for 

each policy ӆ, while strictly return-equivalent SDPs 

have the same expected return for every episode. 

Return-equivalent SDPs have the same optimal policies 

since the expected return at t = 0 is the same. A 

sequence-Markov decision process (SDP) is a decision 

process with Markov transition probabilities but no 

requirement for a Markov reward probability. Return-

equivalent SDPs �̌� 𝑎𝑛𝑑 𝒫 with varying reward 

probabilities have the same expected return at t = 0 for 

each policy, while strictly return-equivalent SDPs have 

the same expected return for every episode. Return-

equivalent SDPs have the same optimal policies since 

the expected return at t = 0 is the same. 

 

Sequence Alignment Rewards Redistribution 

 

Sequence alignment is a technique used in 

bioinformatics to find similarities between biological 

sequences and establish their evolutionary relationship 

(Needleman and Wunsch, 1970; Smith and Waterman, 

1981; Bynagari, 2017; Bynagari, 2018; Bynagari, 2019; 

Bynagari & Amin, 2019; Bynagari & Fadziso, 2018; 

Manavalan, 2016; Manavalan, 2018; Manavalan, 

2019a; Manavalan, 2019b; Manavalan & Bynagari, 

2015; Manavalan & Chisty, 2019; Manavalan & 

Donepudi, 2016). Such alignment strategies are used by 

Align-RUDDER to align two or more demos with a high 

return. We think that the demonstrations all follow the 

same basic technique, thus they're similar and can be 

grouped together. Stormo et al. (1982) found that the 
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alignment produces a profile model in the form of a 

consensus sequence (the strategy), a frequency matrix, 

or a Position-Specific Scoring Matrix (PSSM). The 

difference between the scores of consecutive sub-

sequences when aligned to the profile model is the 

redistributed reward of a new sequence. The new reward 

redistribution strategy consists of five steps as indicated 

in Figure 3: (I) Define events to turn state-action 

sequence episodes into event sequences. (II) Use 

Equation: 𝔰𝑖,𝑗 = 𝐼𝑛 (
𝑞𝑖𝑗

𝑃𝑖𝑃𝑗
) / 𝜆∗ to create an alignment 

score mechanism that aligns relevant event with one 

another. (III) Align all of the demonstrations in multiple 

sequences. (IV) Calculate the profile model and PSSM 

according to Equation ∑ 𝑃𝑖𝑃𝑗
𝑛,𝑛
𝑖=1,𝑗=1  exp (𝜆𝔰𝑖,𝑗). (V) 

Rebalance the reward: each sub-sequence 𝜏𝑡 of a new 

episode 𝜏 is aligned to the profile. The redistributed 

reward 𝑅𝑡+1 is proportional to be difference of scores S 

based on the PSSM given in ∑ 𝑃𝑖𝑃𝑗
𝑛,𝑛
𝑖=1,𝑗=1  exp (𝜆𝔰𝑖,𝑗), 

that is 𝑅𝑡+1  ∝ 𝑆(𝜏𝑡) −  𝑆(𝜏𝑡−1)  

 

 
Figure 3: The five steps of Align-RUDDER’s reward 

redistribution 

 

Reward Redistribution 

 

The profile model is used to redistribute rewards. A 

sequence, 𝜏 =  𝑒𝑂:𝑇 (et is the event at position t) can be 

aligned to the profile, yielding the score  𝑆(𝜏) =
 ∑ 𝔰𝑥𝑖,𝑡

𝐿
𝑡=0 , where 𝔰𝑖,𝑡 is the alignment score for event i at 

location t, xt is the event at position t in the alignment, 

and L is the profile length. Because there are gaps in the 

alignment, L ≥ T and 𝑥𝑡 ≠  𝑒𝑡 . If the prefix sequence of 

𝜏 of length t + 1 is 𝜏𝑡 =  𝑒0:𝑡, then the payoff is 

 

c =  (S(𝜏𝑡) −  S(𝜏𝑡−1) C 

=  g((s;  a)0: t) −  g((s;  a)0: t − 1) ; 

𝑅𝑇+2 =  𝐺𝑂
̅̅̅̅  ∑ Rt + 1

𝑇

𝑡=0

, 𝐶

=  
𝐸𝑑𝑒𝑚𝑜  [𝐺𝑂

̅̅̅̅  ]

𝐸𝑑𝑒𝑚𝑜[∑ 𝑆 (𝜏𝑡) − 𝑆 (𝜏𝑡−1)𝑇
𝑡=0

 

 

where 𝑅𝑇+2 =  𝐺𝑂
̅̅̅̅  ∑ Rt + 1 𝑇

𝑡=0 represents the 

sequence's original return, and 𝑆 (𝜏𝑡−1) = 0. C scales 

Rt+1 to the range of 𝐺𝑂
̅̅̅̅  , and Edemo is the expectation over 

demonstrations. With 0% expectation for 

demonstrations, RT+2 is the rectification of the 

redistributed reward (Arjona-Medina et al., 2019). 

𝐸𝑑𝑒𝑚𝑜  |𝑅𝑇+2| = 0. Since 𝜏𝑡 =  𝑒0:𝑡 and 𝑒𝑡 = 𝑓(𝑠𝑡 , 𝑎𝑡), 
we can set 𝑔((𝑠, 𝑎)𝑜:𝑡) = 𝑆(𝜏𝑡)𝐶. We ensure strict 

return equivalence, since 𝐺𝑂 =  ∑ Rt + 1𝑇+1
𝑡=0 =  𝐺𝑂

̅̅̅̅ . 

The redistribution reward depends only on the past, that 

is, 𝑅𝑡+1 = ℎ(𝑠, 𝑎)𝑜:𝑡). The profile alignment of  

𝜏𝑡−1 can be extended to a profile alignment for 𝜏𝑡 for 

computational efficiency, just as exact matches are 

extended to high-scoring sequence pairs with the 

BLAST algorithm (Altschul et al., 1990; 1997). 

 

Experimental Methods 

 

Align-RUDDER is compared to Behavioral Cloning 

with Q-learning (BC+Q) and Deep Q-learning from 

Demonstrations (DQfD) on two fake tasks with sparse 

and delayed rewards and few demonstrations (Hester et 

al., 2018). GAIL (Ho and Ermon, 2016), a control 

system built for continuous observation spaces, failed to 

solve the two simulated challenges, as it had previously 

failed to solve similar problems (Reddy et al., 2020). 

Then we put Align-RUDDER to the test on the difficult 

MineCraft ObtainDiamond assignment, which has 

episodic, so long-delayed rewards (Guss et al., 2019b). 

All of the experiments use MDPs with a finite time 

horizon of 𝛾 = 1 and episodic rewards. 

 

RESULTS AND DISCUSSION 
 

Artificial tasks I and artificial tasks II. They are 

variations on the grid world rooms example (Sutton et 

al., 1999), in which the MDP states are represented by 

cells (locations). The states do not need to be time-aware 

in our setting to ensure an MDP, but the unobserved 

used-up time introduces a random influence. The grid is 

divided into different rooms, each of which is connected 

to the next simply by a single cell. The agent's purpose 

is to attain a target with the fewest steps possible from a 

starting state. Except for the first chamber, which is only 

connected to the second room by a portal, it must pass 

through various rooms that are connected by doors. 

 

The agent is teleported to a fixed portal arrival cell in 

the second room if it is at the portal entry cell of the first 

room. The position of the portal entering cell is chosen 

at random for each episode, although the portal arrival 

cell remains constant. The position of the portal entry 

cell is specified in the initial room's state. The portal was 

created to avoid the task being solved solely via BC 

startup. It ensures that travelling to the portal entry cells 

is learned, even if they are not visible in demonstrations. 

If the agent stays on the grid, it can travel up, down, left, 

and right at any time. Except for teleportation, all state 

transitions are random. After T = 200 times, an episode 

comes to a close steps. If the agent successfully reaches 
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the intended area, the following stage is for it to enter an 

absorbing condition. There it will remain until T = 200, 

with no additional awards. 

 

The five steps of Align-reward RUDDER's 

redistribution are then described:  

(1) Events correspond to clusters of states derived using 

affinity propagation (Frey and Dueck, 2007), which uses 

the successor representation of states based on 

demonstrations as a measure of similarity.  

(2) Equation: ∑ 𝑃𝑖𝑃𝑗
𝑛,𝑛
𝑖=1,𝑗=1  exp (𝜆𝔰𝑖,𝑗),  is used to get the 

scoring matrix, with ∈ = 0 and all off-diagonal values 

of the scoring matrix set to 1.  

(3) For the MSA of the demos, ClustalW is used with all 

gap penalties set to zero and no biological options.  

(4) As seen in the MSA provides a profile model and a 

PSSM.  

(5) The agent's generated sequences are mapped to event 

sequences according to step (1). Reward is reallocated 

using the PSSM from step 5 and differences in profile 

alignment scores of consecutive sub-sequences 

according to Equation: 

𝑞𝜋 (𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) =  𝑞−𝜋 (𝑠𝑡, 𝑎𝑡) −

 𝐸𝑠𝑡−1, 𝑎𝑡−1
|𝑞−𝜋𝑠𝑡−1, 𝑎𝑡−1| 𝑠𝑡,⌋ = 𝑞−𝜋(𝑠𝑡, 𝑎𝑡) −  𝜓𝜋  (𝑠𝑡,) 

 

Sub-tasks 

 

Sub-tasks, which are alignment places that earn a high 

redistributed reward, are implicitly defined by reward 

redistribution (doors and portal arrival). The sub-tasks 

divide the Q-table into sub-tables, each of which 

corresponds to a sub-agent. When opposed to a single 

Q-table, defining sub-tasks has no effect on learning in 

the tabular scenario. 

All of the approaches that were compared learned a Q-

table and used a -greedy policy with a ratio of ∈ = 0.2 . 
Behavioral cloning is used to set up the Q-table (BC). 

The state-action pairings that are not initialized because 

they are not visited in the demonstrations are given an 

optimistic start by selecting a sample from a normal 

distribution inferred from the demonstration returns 

(avoiding equal Q-values). RUDDER's Q-value 

estimation with correction is used by Align-RUDDER 

to learn the Q-table (Type A variant ii from above). Q-

learning is used to learn a Q-table for BC+Q and DQfD. 

Grid search was used to select hyperparameters, and 

each approach took the same amount of time. 

Performance is determined by the number of episodes 

required to produce 80% of the average return on the 

demos for various numbers of demonstrations. The 

significance of performance differences between Align-

RUDDER and the other approaches is determined using 

the Wilcoxon rank-sum test. 

 

The environment for Task (I) is a 12 x 12 gridworld with 

four rooms. The goal is in room #4, while the starting 

point is in room #1, which includes 20 portal access 

points. The gateway entry is noted in the state for each 

episode. Figure 4 depicts the number of episodes 

required to get 80% of the average demonstration 

reward for various numbers of demos. Over 100 trials, 

the results are averaged. Align-RUDDER surpasses all 

other approaches, especially when there are few 

demonstrations (p-values of <10-10 for up to ten demos). 

 

 
Figure 4: Comparison of Align-RUDDER and other 

methods on Task (I) (left) and Task (II) (right) 

 

The environment for Task (II) is a 12 x 24 gridworld 

with eight rooms. The goal is in room #8, while the 

starting point is in room #1, which includes 20 portal 

access points. The findings are shown in Figure 4, with 

the same parameters and evaluation criteria as Task 1. 

(I). Align-RUDDER surpasses all other approaches, 

especially when there are few demonstrations (p-values 

of <10-26 for up to 10 demos). No pure learning method 

(sub-goals are also learned) has yet to mine a diamond, 

to the best of our knowledge (Scheller et al., 2020). 

Demonstrations from human players are included in the 

dataset. The amount of demonstrations, however, is 

insufficient to immediately learn a policy that can mine 

a diamond from them (out of 117 demonstrations, 67 

mined a diamond). 

 

Align-five RUDDER's phases are implemented as 

follows:  

(1) There are two parts to a state: a visual input and an 

inventory (including the equip state). Both sections are 

scaled to have the same amount of data, such as the same 

number of components and variance. According to 

Arjona-Medina et al (2019) explaining Away Problem," 

we cluster the differences of consecutive states. We 

combined minor clusters and deleted very big clusters, 

leaving roughly 20 clusters corresponding to events 

characterized by inventory changes. Finally, 

demonstrations are assigned to event sequences.  

(2) The equation below is used to calculate the score 

matrix.  

𝑞𝜋 (𝑠𝑡, 𝑎𝑡) = 𝑟(𝑠𝑡, 𝑎𝑡) =  𝑞−𝜋 (𝑠𝑡, 𝑎𝑡) −

 𝐸𝑠𝑡−1, 𝑎𝑡−1
|𝑞−𝜋𝑠𝑡−1, 𝑎𝑡−1| 𝑠𝑡,⌋ = 𝑞−𝜋(𝑠𝑡, 𝑎𝑡) −  𝜓𝜋  (𝑠𝑡,) 

(3) ClustalW aligns the ten shortest demos that obtained 

a diamond, with gap penalties set to zero and no 

biological alternatives.  
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(4) From the multiple alignment, a profile model and a 

PSSM are extracted.  

(5) According to Equation:  

  
c =  (S(𝜏𝑡) −  S(𝜏𝑡−1) C 

=  g((s;  a)0: t) −  g((s;  a)0: t − 1) ; 
 

redistributed reward is based on the variations in profile 

alignment scores of consecutive sub-sequences. Using 

the PSSM from the previous step (4). 

 

Sub-goals are defined based on the dispersion of 

rewards. Profile model positions that achieve an average 

redistributed reward beyond a threshold for 

demonstrations are recognized as sub-goals. Sub-

sequences of demonstration between sub-goals are 

regarded demonstrations for the sub-tasks. To decide 

whether a sub-goal is met, the agent generates new sub-

sequences that are aligned to the profile model. Because 

the redistributed reward across sub-goals is granted at 

the end of the sub-sequence, the sub-tasks receive 

episodic reward as well. Figure 5 shows how reward 

redistribution is used to identify sub-goals. Behavioral 

Cloning is used to pre-train sub-agents on the sub-task 

demos, and then Proximal Policy Optimization (PPO) is 

used to train them in the environment (Schulman et al., 

2018). 

 

 
Figure 5: Example of alignment and reward 

redistribution for demonstrations of ObtainDiamond. 

Thresholding the redistributed reward identifies sub-

goals 

 

Our primary agent is capable of performing all tasks, as 

well as executing sub-agents and learning from the 

redistributed reward (return-equivalent MDP). The 

primary agent is started by executing sub-agents in 

accordance with the alignment, but it is free to diverge 

from this technique. The Appendix contains more 

information on architectures, hyperparamters, and other 

technical specifics. With just ten demonstrations, Align-

RUDDER can learn how to mine diamonds. When the 

31 extracted sub-tasks from the ObtainDiamond 

environment are considered, a diamond is obtained in 

0.1 percent of the cases. To put this proportion into 

perspective, consider a 0.5 chance of success for each 

extracted sub-task, which already necessitates a highly 

trained agent. The success rate for mining the diamond 

as a result would be around 4:66 1010. 

 

CONCLUSION 
 

From a few examples, Align-RUDDER can learn to 

accomplish exceedingly complicated problems with 

delayed and sparse rewards. Align-RUDDER is based 

on the reward redistribution theory, which ensures that 

optimal policies are maintained while the reward delay 

is significantly decreased. Alignment techniques from 

bioinformatics are used in reward redistribution. With 

few demos, Align- RUDDER surpasses competitors on 

artificial tasks. Align-RUDDER was able to mine a 

diamond in 0.1 percent of the MineCraft 

ObtainDiamond tasks. 
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