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Biclustering has effectively been employed in biological sciences and e-commerce for 

medication design and recommender systems, respectively, and has become a prominent 

technique for evaluating big datasets presented as matrix of samples times attributes. One 

of the most successful biclustering methods, Factor Analysis for Bicluster Acquisition 

(FABIA), is a generative model in which each bicluster is represented by two sparse 

membership vectors: one for the samples and one for the features. Due to the high 

computational complexity of computing the posterior, FABIA is limited to approximately 20 

code units. Additionally, code units are not always sufficiently decorrelated, making sample 

membership difficult to determine. To circumvent the limitations of existing biclustering 

approaches, we propose using the recently introduced unsupervised Deep Learning 

algorithm Rectified Factor Networks (RFNs). RFNs use their posterior means to efficiently 

build exceedingly sparse, non-linear, high-dimensional representations of the input. RFN 

learning is a generalized alternating minimization approach that ensures non-negative and 

normalized posterior means and is based on the posterior regularization method. Each 

code unit represents a bicluster, consisting of samples for which the code unit is active 

and features for which the code unit has activating weights. RFN beat 13 other biclustering 

algorithms, including FABIA, on four hundred benchmark datasets and three gene 

expression datasets with identified clusters. RFN was able to detect DNA sequences that 

imply interbreeding with other hominins began before modern humans' ancestors left 

Africa, based on data from the 1000 Genomes Project.  

 

 

 

INTRODUCTION 
 
Biclustering is widely used in statistics (Kasim et 
al., 2016), machine learning (Kolar et al., 2011; 
O'Connor and Feizi, 2014; Lee et al., 2015), and 
bioinformatics (Cheng and Church, 2000; 
Hochreiter, 2013; Madeira and Oliveira, 2004; 
Povysil and Hochreiter, 2014, 2016; Ganapathy, 
2015; Manavalan, 2014), for example, when 
analyzing large dyadic data given. A feature value 
for a given sample is represented by a matrix entry. 
 

                                                      
1Technical Project Manager, Larsen & Toubro Infotech (LTI), Mumbai, INDIA 

A bicluster is a pair of sample sets and feature sets 
in which the samples are similar on features but not 
vice versa. Biclustering groups rows and columns 
of a matrix at the same time. On a subset of rows, 
it groups row components that are comparable. 
Elements of a column In contrast to traditional 
clustering, a sample of a sample of a sample of 
samples of samples of samples of samples of 
samples of samples of only a subset of features 
make biclusters comparable to one another. 
 
A sample could also belong to multiple biclusters 
or none at all. As a result, biclusters can encroach 
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on each other in both dimensions. Biclusters, for 
example, are chemicals that activate the same 
gene module, indicating a side effect in medication 
development. Different chemical substances are 
given to a cell line, and gene expression is 
assessed in this example (Verbist et al., 2015). 
When numerous routes are active in a sample, it is 
divided into biclusters and may have diverse side 
effects. Factor Analysis for Bicluster Acquisition 
(FABIA, Hochreiter et al., 2010) has become one 
of the most used biclustering techniques. On both 
simulated and real-world gene expression data, a 
comprehensive comparison revealed that FABIA 
outperforms existing biclustering approaches 
(Hochreiter et al., 2010). With sparseness 
constraints and cutting-edge biclustering 
techniques, FABIA surpassed nonnegative matrix 
factorization (Donepudi, 2014a).  
 
Problem Statement 
 
In genomics, it was used to identify task-relevant 
biological modules in gene expression data (Xiong 
et al., 2014). FABIA was used to generate 
biclusters from a data matrix containing bioactivity 
measurements across substances (Verbist et al., 
2015) in the major drug design project Quantitative 
Structure Transcriptional Activity Relationships 
(QSTAR). FABIA has been used to detect DNA 
segments that are identical by descent (IBD) in 
different individuals because they inherited the 
segment from a common ancestor in genetic data 
(Hochreiter, 2013; Povysil and Hochreiter, 2014). 
FABIA (Hochreiter et al., 2010) is a generative 
model that discovers biclusters by enforcing sparse 
coding. Because biclusters contain only a few 
samples and features, sparseness of code units 
and parameters is required for FABIA to locate 
them. Two membership vectors are used to 
represent each FABIA bicluster: one for samples 
and another for features. Because there are few 
samples and features that belong to the bicluster, 
these membership vectors are both sparse. 
 
FABIA, on the other hand, has flaws. Because of 
the high computational complexity, which is 
cubically proportional to the number of biclusters, 
or code units, FABIA is only viable with roughly 20 
code units (biclusters). Only the large and common 
input structures would be discovered if fewer code 
units were employed, occluding the small and 
unusual ones. Another flaw with FABIA is that the 
units are not adequately decorrelated, resulting in 
many units encoding the same event or part of it. 
The membership vectors in FABIA do not have 
exact zero entries, which means that the 

membership must be thresholded for clear 
membership assignment. It's difficult to change this 
threshold. A fourth flaw is that biclusters might 
contain substantial positive and negative sample 
members (i.e. positive and negative code values). 
It's unclear whether the positive or negative pattern 
was recognized in this instance. 
 
The drawbacks of FABIA are addressed by rectified 
factor networks (RFNs; Clevert et al., 2015). By 
extending FABIA to thousands of code units in a 
computationally possible method, the first flaw of only 
a few code units is avoided. RFNs add rectified units 
to FABIA's posterior distribution, allowing for faster 
computations on GPUs (GPUs). The RFN 
methodology is the first to use rectification to the 
posterior distribution of factor analysis and matrix 
factorization, despite the fact that rectified linear units 
are widely established in Deep Learning. From the 
neural network field to latent variable models, RFNs 
transfer rectification methods (Azad et al., 2011). 
 
To address FABIA's second flaw, RFNs achieve 
decorrelation by increasing the sparsity of the code 
units through dropout (Srivastava et al., 2014), a 
Deep Learning technique for avoiding latent 
variable coadaptation. RFNs also address FABIA's 
third flaw: because the rectified posterior means 
provide exact zero values, all non-zero values may 
be easily attributed to bicluster membership. 
Because RFNs only have non-negative code units, 
the fourth challenge of distinguishing between 
negative and positive patterns is also solved. 
 
Objectives of the Study 
 
This study focuses on how to circumvent the 
limitations of existing biclustering approaches, we 
propose using the recently introduced 
unsupervised Deep Learning algorithm, Rectified 
Factor Networks (RFNs). RFNs use their posterior 
means to efficiently build exceedingly sparse, non-
linear, high-dimensional representations of the 
input. RFN learning is a generalized alternating 
minimization approach that ensures non-negative 
and normalized posterior means and is based on 
the posterior regularization method. 

 

LITERATURE REVIEW 
 
Detecting Biclusters by RFNs 
 
To solve the shortcomings of the FABIA model, we 
propose using the recently introduced RFNs 
(Clevert et al., 2015) for biclustering. Figure 1 
depicts the factor analysis model and bicluster 
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matrix formation. RFNs are capable of constructing 
exceedingly sparse, non-linear, high-dimensional 
representations of the input with ease. RFN models 
detect infrequent and minor events in the input, 
have low code unit interference, a small 
reconstruction error, and can explain the data 
covariance structure (Rouf et al., 2014). 
 

 
 
Figure 1: Left: Factor analysis model: hidden units 
(factors) h, visible units v, weight matrix W, noise. 
Right: The outer product whT of two sparse vectors 
results in a matrix with a bicluster. Note that the 
non-zero entries in the vectors are adjacent to each 
other for visualization purposes only 
 
RFN learning is a simplified better cope approach 
(Gunawardana and Byrne, 2005) that enforces 
nonnegative and normalized posterior means. It is 
derived from the posterior regularization method 
(Ganchev et al., 2010). The latent code of the input 
data is these posterior means. It is possible to 
compute the RFN code in a relatively short amount 
of time. The estimation of the posterior mean of a 
new input with non-Gaussian priors necessitates 
either numerical integration or iterative updating of 
variational parameters. The posterior mean for 
Gaussian priors, on the other hand, is the product 
of the input and an independent matrix. As a result, 
RFNs use a rectified Gaussian posterior, which has 
the same speed as Gaussian posteriors but 
produces sparse codes due to rectification. 
 
The RFN classical is a factor analysis model 
 

𝑣 = 𝑊ℎ+ ∈ 
 
which calculates the data's covariance structure 
The noise ∈  ~ 𝑁(0, Ψ) of visible units 
(observations) 𝑣 𝜖 𝑅𝑚 is independent of the 

preceding  ℎ~𝑁(0,1) of the hidden units (factors) 

𝑣𝜖𝑅1The 𝑣 𝜖 𝑅𝑚 𝑥 1 weight (factor loading) and 

noise covariance matrices Ψ𝜖 𝑅𝑚 𝑥 𝑚are the model 
parameters. 
 
The posterior regularization method, which adds a 

variational distribution 𝑄 (
ℎ

𝑣
) 𝜖𝑄from a family Q to 

approximate the posterior phjv, is used to select 

RFN models. The posterior means are constrained 
to be non-negative and normalized using Q. All 
model assumptions are contained in the whole 
model distribution 𝑝(ℎ, 𝑣) which defines which data 
structures are modeled. On the posterior, and 

hence on the code ((𝑄 (
ℎ

𝑣
)) includes data-

dependent limitations. For data {𝑣} = {𝑣1, … , 𝑣𝑛}, it 
maximizes the objective ℱ: 
 

1

𝑛
∑ log 𝑝 (𝑣𝑖) −

1

𝑛

𝑛

𝑖=1

∑ 𝐷𝐾𝐿(𝑄(ℎ𝑖|𝑣𝑖) ‖𝑝 (ℎ𝑖|
𝑛

𝑖=1
𝑣𝑖)) 

 
The Kullback-Leibler distance is denoted by DKL. 
Maximizing F accomplishes two objectives at once: 
(i) extracting desired structures and information from 
the data as dictated by the generative model, and (ii) 
assuring sparse codes from the set of corrected 
Gaussians via Q. Q is the variational distribution, and 
ℱ is the negative free energy, according to Neal and 

Hinton's variational framework (1998). If 𝑝(ℎ|𝑣) 𝜖 𝑄,
𝑡ℎ𝑒𝑛 𝑄(ℎ|𝑣), then 𝑄(ℎ|𝑣) =  𝑝(ℎ|𝑣)  , and the 
traditional EM algorithm is obtained. 
 
For Gaussian posterior distributions, and mean-
centered data {𝑣} = {𝑣1, … , 𝑣𝑛}, the posterior 
𝑝(ℎ|𝑣) is Gaussian with mean vector (𝜇𝑝)𝑖 and 

covariance matrix ∑ :𝑝  

 
(𝜇𝑝)𝑖 = (𝐼 +  𝑊𝑇Ψ−1𝑊)−1𝑊𝑇Ψ−1𝑣𝑖   

∑ = 
𝑝

(𝐼 +  𝑊𝑇Ψ−1𝑊)−1 

 
For rectified Gaussian posterior distributions, ∑ ,𝑝  

remains the same as in the Gaussian case, but 
minimizing the second DKL of Equation (2) leads to 
the constrained optimization problem (for a 
detailed description of the RFN objective and the 
algorithm's correctness and convergence, see 
Clevert et al. 2015). 
 

min
𝜇𝑖

1

𝑛
 ∑ (𝜇𝑖 − (𝜇𝑝)𝑖))𝑇  ∑(𝜇𝑖 − (𝜇𝑝)𝑖)

−1

𝑝

𝑛

𝑖=1
 

𝑠. 𝑡. ∀𝑖: 𝜇𝑖  ≥ 0, ∀𝑗 : 
1

𝑛
∑ 𝜇𝑖𝑗

2 = 1
𝑛

𝑖=1
 

 
where ‘≥' denotes a component. The generalized 
alternating minimization algorithm's E-step 
(Gunawardana and Byrne, 2005), for 

solving min
𝜇𝑖

1

𝑛
 ∑ (𝜇𝑖 − (𝜇𝑝)𝑖))𝑇  ∑ (𝜇𝑖 − (𝜇𝑝)𝑖)

−1
𝑝

𝑛
𝑖=1 , 

we merely apply a stage of the gradient projection 
approach (Bertsekas, 1976; Kelley, 1999; Clevert 
et al., 2015). 
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As a result, RFN model selection is very efficient 
while yet ensuring that the correct solution is found. 
Implementing RFNs on GPUs provides additional 
speed (Ahmed & Dey, 2010). 
 
RFN biclustering 
 
Each code unit in an RFN model represents a 
bicluster, with the bicluster consisting of samples 
for which the code unit is active. The bicluster, on 
the other hand, also includes elements that 
activate the code unit. The sample membership 
vector represents the vector of a unit's activations 
across all samples. The feature membership vector 
is a weight vector that activates the unit. Equation 
is used to compute the unconstrained posterior 
mean vector by multiplying the input with a matrix 
(3). By multiplying the input by a vector and then 
rectifying and normalizing the code unit, the 
constrained posterior of the code unit can be 
derived (Clevert et al., 2015). 
 
We apply a Laplace prior to the parameters of the 
original RFN model to make feature membership 
vectors sparse. As a result, only a few features 
contribute to the activation of a code unit, i.e., only 
a few features are bicluster-specific. A component-
wise independent Laplace precondition for the 
weights is used to generate sparse weights W i: 
 

𝑝(𝑊𝑖) = (
1

√2
)𝑛 ∏𝑘=1

𝑛 𝑒−√2|𝑊𝑘𝑖| 

 
The weight update for RFN (Laplace prior on the 
weight) is 
 

𝑊 = 𝑊 +  𝜂 (𝑈𝑆−1 − 𝑊) −  𝛼𝑠𝑖𝑔𝑛(𝑊) 
 
The hyper-parameter a controls the sparseness of 
the weight matrix, while U and S are specified as 

𝑈 =  
1

𝑛
 ∑ 𝜇𝑖𝜇𝑖

𝑇 𝑛
𝑖=1 + ∑,  𝑎𝑛𝑑 𝑆 =  

1

𝑛
 ∑ 𝜇𝑖𝜇𝑖

𝑇 𝑛
𝑖=1 + ∑, 

respectively. Dropout of code units is used to 
impose better sparsity in the sample membership 
vectors. Some code units are set to zero at the 
same time that they are rectified during training, 
which is known as dropout. Dropout prevents code 
unit coadaptation and minimizes code unit 
correlation, which is another FABIA problem that is 
resolved. Because rectification sets code units to 
zero, RFN biclustering does not require a threshold 
for determining sample memberships to a bicluster. 
Further crosstalk between biclusters is prevented 
by mixing up negative and positive memberships, 
resulting in fewer bogus biclusters. Another FABIA 

problem that has been solved is the reduction of 
code unit correlation. 
 
IBD segments were extracted from RFN 
biclusters 
 
Individuals that are similar to each other because 
they share minor alleles of a subset of SNVs are 
represented by RFN biclusters, which are created 
by applying RFN to genotyping data (single 
nucleotide variants). However, because RFN does 
not consider the physical location or temporal order 
of the characteristics, a bicluster does not 
inevitably imply an IBD segment (SNVs). 
According to Hochreiter, IBD segments are made 
up of only shared minor alleles that accumulate 
locally (2013). We build a histogram of counts of 
the RFN model SNVs and evaluate the likelihood 
of witnessing k or more counts by chance to 
separate random minor allele matches derived by 
RFN from actual IBD segments. Let p be the 
likelihood of a minor allele match between t people 
at random. If n SNVs are present in a DNA 
segment, the probability of observing k or more 
model SNVs in this segment by chance is given by: 
 

Pr(≥ 𝑘) =  ∑ (
𝑛

𝑖
) 𝑝𝑖  (1 − 𝑝)𝑛−1

𝑛

𝑖=𝑘
 

 
To do so, the HapFABIA (Hochreiter, 2013) 
procedure was tweaked to extract IBD segments 
from RFN biclusters. To identify local 
accumulations of minor alleles that were extracted 
by RFN, the binomial test is performed as a 
preliminary step. Individuals are reallocated after 
the IBD segments have been disentangled. Later, 
spuriously associated minor alleles are deleted 
using an exponential test across vast distances 
(Donepudi, 2014). Finally, in the last stage, 
identical IBD segments that were previously 
separated because to their length are reconnected. 
 
Fast IBD Browning and Browning (2011) and 
GERMLINE Gusev et al. (2009) are pairwise IBD 
detection algorithms that directly look for shared 
continuous DNA segments and incorporate the 
likelihood of IBD into their original model. In 
contrast, we employ biclusters to find common 
minor alleles in several individuals, and then use 
local accumulations and probability computations 
to extract IBD segments from the biclusters in the 
following steps (Donepudi, 2015). 
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EXPERIMENTAL METHODS 
 
The methods were compared 
 
We compare the following 14 biclustering methods 
to see how well RFNs perform as unsupervised 
biclustering methods: 
 

 RFN stands for rectified factor networks 
(Clevert et al., 2015), 

 FABIA: factor analysis with Laplace prior on 
hidden units (Hochreiter et al., 2010; 
Hochreiter, 2013);  

 FABIAS: factor analysis with sparseness 
projection (Hochreiter et al., 2010);  

 FABIAS: factor analysis with sparseness 
projection (Hochreiter et al., 2010);  

 plaid (Chekouo et al., 2015; Lazzeroni and 
Owen, 2002) 

 Iterative Signature Process (ISA) is a six-step 
algorithm for generating signatures (Ihmels et 
al., 2004), 

 Order-preserving sub-matrices (OPSM) are a 
type of OPSM that preserves the order of the 
sub-matrices (Ben-Dor et al., 2003), 

 SAMBA (Statistical Algorithmic Method for 
Bicluster Analysis) is a statistical algorithmic 
method for bicluster analysis (Tanay et al., 
2002; Manavalan & Bynagari, 2015), 

 xMOTIF (conserved motifs) is a nine-letter 
acronym that stands for "conserved (Murali 
and Kasif, 2003), 

 Divide-and-conquer algorithm (Bimax) (Prelic 
et al., 2006), 

 Cheng-Church d-biclusters 11. CC: Cheng-
Church (Cheng and Church, 2000), 

 enhanced plaid model (plaid t) (Turner et al., 
2003), 

 FLOC is a generalization of CC and stands for 
flexible overlapped biclustering (Yang et al., 
2005) spec: spectral biclustering and  

 spec: spectral biclustering (Kluger et al., 2003). 
 
The parameters of the techniques were optimized 
using auxiliary toy datasets for a fair comparison 
(Bynagari, 2015; Ahmed, 2012). All near-optimal 
parameter settings were examined if more than 
one setting was close to the ideal. These variants 
are referred to as method variants in the following 
(e.g. plaid ss). We used the following parameter 
settings for RFN: Set the parameter a (managing 
the sparseness on the weights) to 0.01. 13 hidden 
units, a dropout rate of 0.1, 500 iterations with a 
learning rate of 0.1, and the parameter a 
(controlling the sparseness on the weights) to 0.01.  

Biclusters are known in simulated datasets 
 
The data creation method and results for 
synthetically created data using a multiplicative or 
additive model structure are described in the 
subsections that follow. 
 
Biclusters with multiplicative  
 
We implanted p 14 10 multiplicative biclusters with 
n 14% 1000 features and l 14% 100 samples. The 
following model is used to construct bicluster 
datasets with p biclusters: 
 

𝑋 =  ∑ 𝜆𝑖𝑧𝑖
𝑇 +  𝛾

𝑝

𝑖=1
 

 

where are 𝛾 ∈  𝑅𝑛𝑥1 is additive noise, while 𝜆𝑖  ∈
 𝑅𝑛 and 𝑧𝑖  ∈  𝑅𝑙  are the ith bicluster's bicluster 
membership vectors. The 𝜆𝑖 are generated by  
 

  randomly selecting 𝑁𝑖
𝜆genes in bicluster from 

910;...; 210),  

 randomly selecting 𝑁𝑖
𝜆 features from (1;...; 

1000),  

 setting 𝜆𝑖 components not in bicluster 𝑖 to 𝑁 
(0; 0:22) random values, and  

 setting 𝜆𝑖  components in bicluster 𝑖 to 𝑁(±3, 
1 random values, where the sign is chosen 
randomly. 

 
The 𝑧𝑖 are created by (i) randomly selecting 𝑁𝑖

𝑧 

samples in bicluster I from (5;...; 25), (ii) randomly 
selecting 𝑁𝑖

𝑧 samples from (1;...; 100), and (iii) 

setting 𝑧𝑖 constituents not in bicluster i to N(0, 0.22) 
random values and (iv) setting 𝑧𝑖 modules that are 
in bicluster i to N(2, 1); random values. Finally, we 

draw the 𝛾 entries (additive noise on all entries) 
according to N(0; 32) and compute the data X 

according to  𝑋 =  ∑ 𝜆𝑖𝑧𝑖
𝑇 +  𝛾

𝑝
𝑖=1  . Using these 

settings, noisy biclusters of random sizes between 
10 x 5 and 210 x 25 (features x samples) are 
generated. In all experiments, rows (features) were 
standardized to mean 0 and variance 1. 
 
Data with additive biclusters 
 
Biclustering data was collected in this experiment, 
with biclusters resulting from an additive two-way 
ANOVA model. 
 

𝑋 =  ∑ 𝜃𝑖 ⊙ (𝜆𝑖𝑧𝑖
𝑇) +  𝛾

𝑝

𝑖=1
 

 

Where 𝜃𝑖𝑘𝑗 =  𝜇𝑖 +  𝛼𝑖𝑘 + 𝛽𝑖𝑗  𝑎𝑛𝑑 ⨀ ,   is the 

element-wise product of matrices and 𝜆𝑖 and 𝑧𝑖 are 
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binary indicator vectors indicating the rows and 
columns of bicluster i. An ANOVA model with mean 

𝜇𝑖, kth row effect 𝛼𝑖𝑘 (first component of the ANOVA 
model), and jth column effect 𝛽𝑖𝑗   (second element of 

the ANOVA model) describes the ith bicluster. 
Interaction effects are not included in the ANOVA 
model. Despite the fact that the ANOVA model is 
provided for the entire data matrix, only the effects on 
the bicluster's rows and columns are used in data 
production. Noise and bicluster sizes are created. 
Data was created for three different signal-to-noise 
ratios, each of which is dictated by the distribution 
from which 𝜇𝑖 is taken: A1 (low signal) N(0; 22), A2 
(mid signal) N(2; 0.52), and A3 (high signal) N(4; 0.52), 
with the sign of the mean chosen at random. The row 
effects aki and the column effects 𝛽𝑖𝑗 are taken from 

N(0.5; 0:22) and N(1; 0.52), respectively. 

 

RESULTS AND DISCUSSION 
 
We use the previously introduced biclustering 
consensus score for two sets of biclusters 
(Hochreiter et al., 2010) for method evaluation, 
which is calculated as follows: 
 

 Using the Jaccard index, compute similarities 
between all pairs of biclusters, one from the 
first set and the other from the second. 

 Use the Munkres algorithm to maximize the 
assignment of biclusters from one set to 
biclusters from the other set. 

 Multiply the sum of the allocated biclusters' 
similarities by the number of biclusters in the 
bigger set. 

 
Table 1: Results are the mean of 100 instances for 
each simulated dataset 
 

 

Different numbers of biclusters in the sets are 
penalized in step (iii). Only identical sets of 
biclusters get a 1 as the highest consensus score. 
The biclustering findings for these datasets are 
shown in Table 1. All other approaches (t-test and 
McNemar test of correct elements in biclusters) 
were significantly outperformed by RFN. 
 
Runtime comparison 
 
RFN is available in both CPU and GPU versions in 
our open-source implementation (Ahmed & Dey, 
2009). Figure 2 shows how RFN's execution times 
are substantially shorter and scale far better with 
the number of biclusters than its major competitor 
FABIA, as seen in a runtime comparison on 
synthetic data. An Intel i5-3470 CPU and an 
NVIDIA Titan X GPU were used in this test.  
 

 
Figure 2: Runtime comparison of FABIA and RFN 
 
Gene expression datasets 
 
We use gene expression datasets to test 
biclustering algorithms, with the biclusters being 
gene modules. A bicluster is made up of genes that 
are in a specific gene module, as well as samples 
for which the gene module is active. Hoshida et al. 
(2007) used extra datasets as side information to 
cluster three gene expression datasets provided by 
the Broad Institute. 
 
It's worth noting that Hoshida et al (2007) 
clustering's could contain incorrectly assigned 
cluster memberships, which could skew the 
benchmark findings. 
 

 The ‘breast cancer' dataset (vanta Veer et al., 
2002) was created with the goal of identifying 
a gene signature that could predict the 
outcome of a breast cancer treatment. The 
outlier array S54 was eliminated, leaving a 
dataset with 97 samples and 1213 genes. 
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Three biologically significant sub-classes 
were discovered by Hoshida et al. (2007), and 
they should be renamed. 

 Gene expression profiles from human cancer 
samples from various tissues and cell lines 
are included in the ‘multiple tissue types' 
dataset (Su et al., 2002). There are 102 
samples in the collection, totaling 5565 genes. 

 The tissue types should be able to be re-
identified using biclustering. The ‘diffuse 
large-B-cell lymphoma (DLBCL)' dataset 
(Rosenwald et al., 2002) was created with the 
goal of predicting post-chemotherapy survival. 
There are 180 samples and 661 genes in it. 
Hoshida et al. (2007) identified three classes 
that should be renamed. 

 
To prevent biases towards prior knowledge about 
the number of actual clusters, we picked five 
biclusters for approaches assuming a fixed number 
of biclusters. We utilized the identical settings 
except for the number of concealed units 
(biclusters). The performance was tested by 
comparing known classes of samples in the 
datasets with sample sets found by biclustering 
using the consensus score, the score is evaluated 
for sample clusters rather than biclusters. Table 2 
summarizes the findings of the biclustering. RFN 
biclustering outperformed all other approaches in 
two of the three datasets and came in second in 
the third (significantly according to a McNemar test 
of accurate samples in clusters). 
 
Table 2: Results on the (A) breast cancer, (B) 
multiple tissue samples, (C) DLBCL datasets 
 

 
 
1000 Genomes datasets 
 
In this investigation, RFN was employed to identify 
IBD DNA fragments. A DNA segment is IBD if it is 

identical in two or more persons because they 
inherited it from the same ancestor, that is, the 
segment has the same ancestral origin in these 
individuals. In a genotype matrix (Hochreiter, 2013; 
Povysil and Hochreiter, 2014, 2016), which has 
individuals as row elements and genomic SNVs as 
column elements, biclustering is well-suited to 
detect such IBD segments (Manavalan & 
Ganapathy, 2014). The minor allele of a particular 
SNV is usually present in a particular individual, so 
entries in the genotype matrix usually count how 
many times the minor allele of that SNV is present 
in that individual. Individuals that share an IBD 
segment are similar because they share minor 
alleles of SNVs (tag SNVs) inside the IBD 
segment, hence IBD segments can be thought of 
as biclusters. 
 
We used next-generation sequencing data from 
the 1000 Genomes Phase 3 (The 1000 Genomes 
Project Consortium, 2015) 
[ftp:/ftp.1000genomes.ebi.ac.uk/Vol03325/ftp/rele
ase/20130502/ (last accessed 31 October 2014)]. 
This collection contains low-coverage whole 
genome sequences from 2504 people from the 
continent's major ethnic groups (Africans, East 
Asians, South Asians, Europeans, and Admixed 
Americans). Individuals with cryptic first-degree 
relationships to others were deleted, leaving a final 
dataset of 2493 people (see Povysil and 
Hochreiter, 2016; Manavalan & Bynagari, 2015). 
The Max Planck Institute for Evolutionary 
Anthropology (Meyer et al., 2012; Prufer et al., 
2014) provided high-coverage genomes of the Altai 
Neanderthal and Denisovan 
(http://cdna.eva.mpg.de/denisova/ (2 February 
2021, date last accessed) and 
http://cdna.eva.mpg.de/neandertal/altai/, 23 May 
2021, date last accessed). We also used data from 
the 1000 genomes project, which included the 
sequence of the reconstructed common ancestor 
of human, chimp, gorilla, orangutan, macaque, and 
marmoset genomes. 
 
We limited our study to SNVs, excluding repeat 
regions and CpGs, as did Povysil and Hochreiter 
(2016). We deleted common and private SNVs 
before the analysis since RFN IBD identification is 
dependent on low frequency and rare variations 
(minor allele frequency 0.05). After that, all 
chromosomes were separated into 10 000 SNV 
intervals with 5000 SNV overlap between adjacent 
intervals. IBD segments were derived from 
biclusters after RFN was applied to unphased 
genotyping data. We used the same approach as 
Povysil and Hochreiter (2016), limiting the analysis 
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to SNVs and excluding repeat areas and CpGs. 
We eliminated common and private SNVs from the 
analysis since RFN IBD detection relies on low 
frequency and rare variants (minor allele frequency 
0.05). Following that, all chromosomes were split 
into 10 000 SNV intervals with adjacent intervals 
overlapping by 5000 SNVs. The unphased 
genotyping data was subjected to RFN, and IBD 
segments were recovered from biclusters.  
 
The cumulative sum of minor allele presences of 
individuals who share the IBD segment and tag 
SNVs retrieved by RFN is used to identify actual 
IBD segments from random finds. True IBD 
segments should have an IBD score that is 
proportional to the number of persons multiplied by 
the number of tag SNVs. We use 10E5 randomly 
picked DNA segments of the same size as the 
identified segment to construct the empirical 
distribution of IBD scores to estimate the 
significance of a result. Under the H0 distribution, 
we may calculate the P-value of our discovered 
IBD segments (Bynagari, 2014). Following that, we 
extract the genotyping matrix, which includes the 
sampled people as well as a number of SNVs 
equal to the number of SNVs between the first and 
last tag SNV of the IBD segment, starting with the 
sampled start SNV. Finally, we take a random 
sample of tag SNVs from these SNVs and compute 
the IBD score as previously explained. Figure 3 
shows an IBD segment with a significantly 
significant IBD score (P-value < 1E-5).  
 

 
 
Figure 3: Example of an IBD segment matching 
 
We discovered about > 1.5 million IBD segments 
in the 1000 Genomes Project Phase 3 data. Only 
Africans shared over 70% of the IBD segments, 
while individuals from all five continents shared < 

1%. IBD segments discovered using RFN require 
less postprocessing than those found with 
HapFABIA, which was utilized in Hochreiter (2013) 
and Povysil and Hochreiter (2016). This is because 
RFNs can extract many more biclusters and thus 
IBD segments in a single run. As a result, 
difficulties created by HapFABIA's iterative method 
can be avoided. We compared the discovered IBD 
segments with the relevant ancient genomes as 
described by Povysil and Hochreiter to acquire 
insights into the genetic links between humans, 
Neanderthals, and Denisovans (2016). To identify 
IBD segments originating from this ancestor from 
those resulting from later interbreedings, we 
removed segments that were already present in 
the reconstructed ancestral sequence of all 
primates. We were able to confirm that Africans 
and Neanderthals/ Denisovans share a surprising 
number of IBD segments (see Fig. 3 for an 
example of an IBD segment that fits the 
Neanderthal genome). 
 
Only Africans have Neanderthal- and Denisova-
matching IBD segments, which are clearly shorter 
than IBD segments shared by non-Africans and 
ancient genomes (5500 versus 12 500 bp for 
Neanderthal- and Denisova-matching segments, 
respectively). Because shorter segments are 
thought to be older than longer ones (Povysil and 
Hochreiter, 2014), this suggests very early 
interbreedings inside Africa involving 
Neanderthals, Denisovans, and contemporary 
African ancestors (Povysil and Hochreiter, 2016).  

 

CONCLUSION 
 
On fake and real-world datasets, we introduced 
RFNs for biclustering and compared them to 13 
existing biclustering approaches. RFN 
considerably outperformed all its competitors, 
including FABIA, on 400 benchmark datasets 
containing artificially implanted biclusters. RFN 
biclustering performed twice as well as all other 
approaches on three gene expression datasets 
with previously validated ground-truth. RFN 
identified IBD segments that earlier IBD detection 
algorithms had failed to find using data from the 
1000 Genomes Project. These discovered parts 
back up the theory that human ancestors interbred 
with other ancient hominins in Africa. RFN 
biclustering is designed for big datasets with 
sparse coding, a large number of coding units, and 
different membership assignments. As a result, 
RFN biclustering outperforms FABIA and has the 
potential to become the new state-of-the-art 
biclustering method. 
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