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Long Short-Term Memory Networks, otherwise known as LSTMs, have not been left out 

when it comes to applying them to daily discharge forecasts rather successfully. A good 

number of experimental cases, be as it may, need forecasts in a manner with a more 

granular time frame. Case in point, the correct forecast of brief but intense flooding apexes 

can bring about a difference with the capacity of saving lives in mass. Still, such climaxes 

have the capability of escaping the rough non-permanent resolve of daily forecasts. 

Nevertheless, when an LSTM data is naively learned on an hourly data basis, it entails a 

time-consuming process with lots of stages, which makes the training complex and 

computationally-cum financially costly. With this research, we suggest a pair of Multi-Time 

Scale LSTM or MTS-LSTM frameworks that collaboratively forecast a multiplicity of 

timescales inside a single model. This is done as they proceed with long-past investments 

in one non-permanent resolve and diversify into every timescale in order to arrive at more 

current input stages. For this, we carry out a test on these models on a total of 516 basins 

through the continental United States and standard in comparison with the United States 

National Water Model. Juxtaposed with naive forecasts that have distinctive LSTM for 

each time scale, multi-timescale designs will be computationally the more efficient party, 

suffering no loss of correctness. Outside the quality of predictions, the multiple-facing 

timescale has the capacity to process a variety of input variables at various timescales. 

That, in question, proves quite relevant when it comes to operational applications in which 

meteorological forcings’ lead time is contingent upon their non-permanent resolutions.  

 

 

 

INTRODUCTION 
 
The modelling methods for rainfall-runoff that are 
leaned on deep learning—especially the LSTMS 
networks—have been proven to be efficient in 
numerous studies. Long Short-Term Memory 
networks have the capacity to forecast a multiplicity 
of catchments with the aid of one model and still 
bring out more correct predictions when compared 
to cutting-edge procedure-reliant methods in an 
array of standards. The various methods need 
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hydrology-related data at different timescales. 
Case in point, operators at the hydropower level 
may be attentive to day-by-day or weekly—and 
possibly even longer—inputs for their reserve 
bases. Meanwhile, flood prediction is something 
that needs sub-daily forecasts.  
 
Nevertheless, the bigger bulk of the work 
associated with the application of the deep learning 
model in order to flow the prediction stream has 
mostly be conducted at the timescale level. Day-
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by-day predictions are ideal for mid-range to 
longer-range determinations. On the contrary, day-
day-day input resolution can mute diurnal 
variations with the ability to influence the final 
signatures with some variations. That includes 
evapo-transpiration as well as snow melting. 
Therefore, day-to-day forecasts are more often 
than not rather too coarse for it to supply actionable 
data for short-term predictions. Case in point, when 
there is heavy flooding, the disparity between 
balancing out the outcomes spread throughout the 
day and a similar volume of water packed into a-
few-hour flashflood can bring about a difference 
that is life-threatening.  
 

Due to this situation, the hydraulic approaches that 

can be applied usually operate at a multiplicity of 

timescales with the help of many non-dependent 

settings of a conventional, procedure-reliant 

rainfall-runoff method. In an example, the National 

Water Model (NWM) of the United States National 

Oceanic and Atmospheric Administration (NOAA) 

generates short-range predictions on an hourly 

basis. It also produces medium-to-long-range 

predictions on a three-to-six-hour basis every six 

hours. With this approach, the demand of 

computational resources will be multiplied, and, as 

such, can culminate in non-consistent forecasts at 

any point where a pair of setups converge in their 

prognostic timescales. The challenge that is the 

multiplicity of input as well as output time ranges is 

a popularly known one in the machine learning 

universe. 

 

REVIEW OF RELATED LITERATURE  
 
The flexibility of re-occurring neural designs 
structure-wise, creates an avenue for the 
approaches that together carry out the processing 
of various timescales, hierarchically. The ways for 
one to divide and conquer the lengthy processes 
via stratified processing goes back to tens of years 
ago (Schmidhuber (1991); Mozer (1991)). In recent 
years, a clockwork structure was proposed 
(Koutnik et al., 2014) to partition a repeating cycle 
of neural systems according to layers with separate 
time speeds. In the scenario, every layer is 
updated paying attention to individual frequency. 
By doing so, the layers that have lower frequency 
will enable the system to train dependencies of the 
longer-term family. Even when a hierarchical 
method like this is applied, the neurons with high 
frequency will mandatorily process the series for 
the entire time (Manavalan & Ganapathy, 2014). 
That, ultimately, makes the training process 

somewhat slow. An LSTM process was extended 
to process inputs that were irregularly sampled 
through a time entrance that attends only to the 
investment at stages involved training constancy.  
 
This way, the discriminant overlaid input of 
messages can be assisted. However, the process 
is more likely to not be suited to the prediction of 
rainfall-runoff. The reason is that it does not have 
any means to aggregate the inputs while the time 
gate is not open. Through a demonstration, a study 
showed how hierarchy-based processing acts as a 
catalyst for when LSTMS are translating written 
expressions and identifying handwritings. Yet, the 
approach is dependent on a binary move that can 
be differentiated only by means of a workaround. A 
good number of these models were tailored to 
perform tasks such as natural language processing 
as well as other applications that are not physical 
(Ahmed & Dey, 2009). In dissimilarity to these 
assignments, time series for the modelling of 
rainfall-runoff have frequencies that are regular 
with fixed interperational policies. Whereas, words 
in strokes or natural lingua francas in handwriting 
are not the same length-wise.  
 
An area of application came closer than ever in this 
regard. The study forecast the speed of the wind 
considering input information at a variety of 
timescales. Nonetheless, in semblance to the said 
language as well as handwriting application 
scenarios, forecasting a single times series was 
the goal—whether they are sentences, wind 
speeds or strokes. The objective we had 
encompassed a multiplicity of outcomes, one for 
every timescale in focus. As such, the prediction of 
multi-timescale rainfall-runoff has resemblance 
with the optimization with multiple objectives 
(Donepudi, 2014). For ours, the various goals have 
close relations with one another since the 
aggregation of discharge throughout the time 
stamps ought to be conservatice in nature.  
 
Case in point, every forecast covering a 24-hour 
period ought to average to one daily step in 
forecasting. Instead of viewing the challenge from 
a multi-aim angle, researchers modelled time-
flowing controls using the ODE-LSTMs. The ODE-
LSTMs are a method known for combining LSTMs 
with a blend of typical differential equations as well 
as continuous neural systems. The models that 
result from this can produce nonstop forecasts with 
a habitual granularity (Ahmed & Dey, 2010). At the 
onset, this appears to be an approach with high 
promises. But, it comes with many setbacks for our 
application. In the first place, since a single model 
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can produce forecasts for all the focused-on 
timescales, one will not be able to easily use a 
variety of forcings for the many target timescales. 
In the second place, originally, ODE-LSTMs are 
designed to cater to scenarios in which the input 
informationes comes at inconsistent intervals.  
 
From our perspective, the opposite is factual. The 
meteorological forcings possess stationary signals, 
which makes them regular to a large extent 
(Maleque et al., 2010). For practical reasons, too, 
we do not require forecasts with habitual 
granularity because a fixed group of target 
timescales proved enough for the cause. Finally, in 
our exemplary demonstrations, with the ODE-
LSTMS to determine time ranges that were 
unconnected to the learning which turned out 
worse and significantly slower than the (dis) 
aggregation of the fixed time scale forecasts for our 
multiplicity of timescale LSTM. As a result of these, 
we omitted the ODE-LSTMs from the major 
evaluation. In this paper, we demonstrate how 
LSTM-hinged structures can collaboratively 
forecast outcomes at many timescales with a 
single model. 
 
With this research, we contribute, firstly, by 
outlining a pair of LSTM structures that forecast 
results at a variety of timescales. We attempted to 
build on the reality that watersheds are damped 
while the pedigree of entire mass and energy 
results are critical. As such, the impact of variation 
at the high frequency level assumes less 
importance when it comes to lead times of longer 
durations. Our approach to make availability 
regarding many output time scales procedures 
shortens the sequences of the inputs since the 
inputs with the higher resolutions are only vital for 
the time steps in the last few stages. We put a 
benchmark on their daily as well as hourly 
forecasts against a naive resolution that learns 
each LSTM for each timescale and a conventional 
hydrology-related model, which is the United 
States National Water Model.  
 
Our results demonstrate that every LSTM solution 
is capable of forecasting at substantially more 
Nash-Sutcliffe efficiency compared to NWM on all 
involved time ranges. There is only a small amount 
of correctness difference between the LSTMs but 
the naive method proves to have significantly more 
advantage in comparison to multi-timescale 
LSTMs (Azad et al., 2011). In the second place, we 
introduce a scheme for regularization, one that 
reduces the inconsistency existing throughout the 
considered timescales as they graduate from the 

naive stages. In accordance to our findings, the 
regularization does not only decrease the 
irregularity but as well culminates in considerably 
better forecasts generally. Thirdly, we show that 
LSTMs with many time ranges have the capacity to 
ingest individual and various groups of forces for 
each of the considered timescales. Closely, that is 
similar to operational predicting scenarios where 
forces with more non-permanent resolutions 
usually have briefer lead times compared with 
forces possessing low resolutions (Manavalan, 
2014).  

 

RESEARCH METHODOLOGY 
 
To maintain a certain degree of comparability as 
well as continuity, we carried out our research in a 
way that is as comparable as possible with 
preceeding benchmarking papers on the CAMELs 
dataset. Of the total 531 CAMELS basins that were 
used in previous studies, 516 of them possessed 
hourly stream measurement data sources from the 
USGS Water Information System via the  
Instantaneous Values REST API. With this service, 
there are historical quantifications provided at 
different sub-daily resolutions, which often based 
on every 15 to 60 minutes. We average it to an 
hourly and daily time step for every basin involved. 
Because our forcing information and standards 
model data are reliant of UTC-derived timestamps, 
we transformed USGS streamflow timestamps into 
UTC.  
 
CAMELs are known to provide nothing but day-to-
day meteorological forcing information. But, we 
were in need of hourly forcing for this paper. In 
order to maintain congruence with the preceding 
CAMELS case studies, we adopted the hour-by-
hour NLDAS-2 product. This comprises 
meteorological data dating as far back as 1979 (Xia 
et al., 2012). Then, spatially, we carried out an 
averaging for the forcing variables for every basin. 
In addition, we carried out an averaging for basin-
specific hour-by-hour weather-related variations 
for everyday values. There was also a training of 
our models starting from October 1st 1990 to 
September 30th, 2003. This timeframe was 
employed as a period of validation, wherein we 
evaluated many structures and chose the most 
ideal model hyperparameters. The entire LSTM 
models employed in this research take eleven 
forcing variables. They are concatenated at every 
step in time with similar 27 rigid catchment 
characteristics derived from the CAMELS set of 
data used in another study. 
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For our experiments, we made use of two sets of 
designs, serving as baselines with which 
comparison can be made to the suggested 
frameworks. A proposed LSTM proved able to 
adapt naively. To hour-by-hour streamflow 
modelling and the United States National Water 
Model as well as the National Oceanic and 
Atmospheric Administration. The NOAA comes up 
with streamflow forecasts on an hourly basis 
concerned with the NWWM. That, in question, is a 
process-derived model that is based on the WRF-
Hydro.  

 

NAIVE LONG SHORT-TERM MEMORY 

NETWORKS 
 
LSTMs are spinoffs (Hochreiter and Schmidhuber, 
1997) from the recurrent neural systems fashioned 
to carry out modelling for long-term dependency 
framework that exists between the input data and 
the output counterparts. Long Short-Term Memory 
Networks are able to sustain an internal storage 
state that is refreshed at every interval step by 
means of a group of activated controls referred to 
as gates. What are the roles of these gates? They 
are in control of the relationship between the input 
and the state—via an input gate. The gates also 
control the relationship between the state and the 
output via the output gate. Gates also govern the 
storage timescales by means of a forget gate.  
 
Long Short-Term Memory networks have the ability 
to survive with more comprehensive time series 
compared to classic recurrent systems of neurals. 
That is because they are not prone to disappearing 
gradients while the training process is ongoing 
(Bengio et al., 1994; Hochreiter and Schmidhuber, 
1997; Rouf et al., 2014). Considering the reality 
that LSTMs can process input phases in a 
sequential order, longer duration series will 
culminate in longer learning as well as inference 
durations. This does not present much of a 
problem for day-to-day forecasts because windows 
to look back to the last 365 days seems to be the 
right amount for a good number of basins, mostly 
in the datasets called CAMELS. This was learned 
everyday using an input chronology duration of 356 
days. In terms of hourly information, surprisingly 
half a year is equivalent to over 4300 time phases, 
thus amounting to reasonably long learning and 
inference time periods.  
 

 
 
Additionally, at least to the calculative overhead, 
the Long Short-Term Memory network forgets the 
gate, making it difficult to train long-term 
dependents due to the fact that it reintroduces 
disappearing gradients into the LSTM effectively. 
Be as it may, it is not ideal to simply omit the gate 
for deletion as evident in empirical LSTM studies. 
Plus, the explorative tests we conducted 
manifested that this is a result-deteriorating 
element. In order to address this drawback, a 
proposal was made to initialize the bias of the gate 
for forgetting to a minimal value of positivity. This 
way, the training kicks off with an open gate, 
naturally after which it will enable the flow of 
gradient across a higher number of period steps.  
 
Using the bias initialization contraption for all the 
LSTM models we considered gave us the avenue 
to add the LSTM with an hourly input rate as the 
remote hourly baseline for the models we proposed 
(Ahmed, 2012). The framework of this naive criteria 
bears resemblance with the day-to-day LSTM, only 
that we absorbed input chronologies of 4,320 
hours, which is equivalent to 180 days. Inclusively, 
we ranged the training rate and the size of the 
batches for the naive hour-to-hour LSTM 
considering the reality that it is in the reception of 
24 times more samples compared to the day-to-
day LSTM. Due to this critically slow learning, it 
becomes harder for one to search for 
hyperparameters. 

 

FORECASTING MULTIPLE 

TIMESCALESS WITH LSTMS 
 
We assessed a pair of LSTM frameworks with the 
capacity to predict simultaneously at a multiplicity 
of timescales. For simplicity sake, the succeeding 
descriptions adopt the instance of a two-timescale 
design which produces day-to-day and hour-by-
hour forecasts. However, the frameworks that we 
give descriptions to in this study are generalistic to 
other timescales as well as to over two timescales. 
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The very first model, called the shared multi-
timescale LSTM or the sMTS-LSTM, is a 
fundamental extension of the naive method. As 
usual, we produce day-to-day forecasts, wherein 
the Long Short-Term Memory network absorbs an 
input chronology of TD time stages at day-to-day 
resolution and the outcomes is a forecast at the 
final time stape.  
 
After that, we factory-set the unexposed cell states 
to their values starting from the time phase. Then, 
the hourly input process is absorbed in length so it 
can come up with a sum of 24 hour-by-hour 
forecasts that are in alignment to the final daily 
forecast. To express differently, for every 
forecasting phase, we carry out a pair of forward 
passes via the same Long Short-Term Memory 
network. This produces a daily forecast, one which 
formulates 24 predictions in correspondence to the 
hour. Then, we include a one-hot timescale kind of 
encoding to initialize the sequence in a manner 
through which the LSTM will be able to discern 
daily inputs from the hourly ones. When it comes 
to this approach, the key insight is: the hour-by-
hour forward communication begins with the LSTM 
states that start from the day-by-day forward 
relations. Effectively, the LSTM can access a huge 
window for looking back. However, in dissimilarity 
to the hourly LSTM with naive attributes, there is 
no suffering from the delivery effects of the 
significantly time-consuming input chronology 
(Bynagari, 2014).  
 
The second framework, on the other hand, is a 
variant that is more generalistic to the sMTS-LSTM 
particularly designed to handle multi-timescale 
forecasts. As a result, we refer to it as the multi-
timescale LSTM or the MTS-LSTM—which 
functions as the communal version however 
dividing LSTMs into two separate branches, one 
going to each of the timescales. First, we produce 
a forecast with an LSTM serving as the rough 
timescale with the aid of a complete input 
chronology of length, known as TD. Secondly, we 
subject the day-to-day unexposed and cell states 
to reuse, from the step (TD-TH/24) as the 
preceding states for a finer timescale LSTM. This, 
in turn, produces the aligning 24-hour forecasts. 
Because both LSTM diversifications possibly come 
in different sizes, the states are fed via a linear 
state transmission layer—after which they are 
reused as initial hour-by-hour rates. 
 

 
 
For this setting, every LSTM diversification only 
gets inputs of their corresponding timescales. Due 
to this, there was no need for us to subject the 
timescale to one-hot encoding. This framework 
makes the reason we refer to the other variant as 
“shared” MTS-LSTM clearer in nature. In effect, the 
sMTS-LSTM ablates the MTS-LSTM. These two 
variants share one thing in common, which is the 
architecture. Nevertheless, their weights are 
distributed across the entire timescale 
diversifications and the transfer layer of its state 
are identity-related operations.  
 

INPUT VARIABLES PER TIMESCALE 
 
One salient upside of the MTS-LSTM in 
juxtaposition with the sMTS-LSTM framework is 
derived from the fact that its input dimensionality is 
flexible in nature. As every time scale goes through 
processing in an individual LSTM diversification, 
the various input variables can be absorbed to 
realize forecasts for many timescales.  
 
In a way, this is a key disparity in operational case 
studies wherein, case in point, dwells day-to-day 
weather predictions with substantially longer lead 
periods compared to the obtainable hour-to-hour 
forecasts. Or, in a case when one is using local 
sensing information obtainable only at specific 
overpass frequencies. For these scenarios, MTS-
LSTMs can process daily forcings in its hour-
sensitive touchpoint. Hence, the per-timescale 
forcings approach gives room for many timescales 
to have use cases for different inputs.  
 
In bid to assess this capability, we employed two 
groups of forcings as day-to-day inputs. First is the 
Dayment and Maurer forcing categories partitive to 
the dataset known as CAMELS (Newman et al., 
2014). Due to the insufficiency of forcing samples 
for other hours, we experimented in two ways: 
continually conducting just the hourly NLDAS 
forcings and additionally absorbing the aligning 
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Daymet and Maurer forcings at each hour of the 
considered day. The Maurer forcings range just 
until 2008, so we had this study during the 
validation timeline from October of 2003 to 
September of 2008. 
 

 
 
Based on the fact that the MTS-LSTM as well as 
the sMTS-LSTM frameworks have the capacity to 
simultaneously produce forecasts at a multiplicity 
of timescale, it is possible for us to incentivize 
forecasts that align throughout the timescales. 
Dissimilar to other environments such as computer 
vision, consistency is something extensively 
defined in our approach. Moreover, the forecasts 
are regular should the mean of each day’s hourly 
forecasts be similar to the specific day’s daily 
forecasts. With this, we can state explicitly that the 
hurdle in terms of a regularization control for loss 
loss function. The loss function is also able to 
stabilize them with the mean square disparity 
among day-to-day and day-averaged hour-to-hour 
forecasts. Bear in mind that despite the fact that the 
regularization is described with just two 
concurrently forecast timescales, the model is 
generalistic to more timescales. That is because 
we can plus the mean squared disparity existing 
between every time scale pair. 

 

OBSERVATIONS & CONCLUSION  
 
The motive of this paper is to create a generalistics 
application of LSTM-reliant rainfall-runoff 
modelling to a cornucopia of timescales. The 
exercise is not as negligible as basically running a 
variety of deep learning approaches at various 
timescales as a result of extensive periods 
available for looking back. It also has to do with 
associated storage and calculative costs. Using the 
MTS-LSTM and the sMTS-LSTM, we introduced 
two LSTM-derived downpour-runoff models using 
the individual physical attributes of the simulation 
challenge. From the results, it is evident that the 
LSTMs have more advantage compared to 
process-derived approaches—which we refer to as 
the sMTS-LSTM—has the capacity to process 
long-term dependents.  
 

This study is a representation of one step in the 
direction of the development of operational 
hydrologic approaches spinning off from the deep 
learning model. In general, it is our belief that MST-
LSTMs are more promising for futuristic purposes. 
It can not only integrate forcings of various non-
permanent outcomes, but can also produce 
accurate and regular forecasts at a multiplicity of 
timescales. Furthermore, it's calculative overhead 
during the learning process and the inference 
period is substantially smaller compared to the 
specific models for each timescale.  
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