Skip to main navigation menu Skip to main content Skip to site footer

Peer Reviewed Article

Vol. 2 No. 1 (2022)

Bridging UX and Robotics: Designing Intuitive Robotic Interfaces

Submitted
28 March 2022
Published
09-05-2022

Abstract

This project uses UX concepts to build intuitive robotic interfaces to improve human-robot interaction (HRI). The primary goals are establishing robotics-related UX principles, studying robotic system complexity, and evaluating developing technologies' effects on interface design. The technique assesses robotic interface design methods and technology using a thorough literature study and case studies. Significant findings show that user-centered design is essential for accessible and effective robotic interfaces, while AI, AR, and gesture recognition improve personalization, visualization, and interaction. Technology is changing quickly, requiring adaptive, future-proof solutions. Policy implications include ethical norms for robotic design to address privacy, autonomy, inclusion, and standardization to encourage interoperability and adoption. This study emphasizes the need to combine UX with robotics to create technologically sophisticated, user-friendly, and socially responsible interfaces.

References

  1. Ahmmed, S., Narsina, D., Addimulam, S., & Boinapalli, N. R. (2021). AI-Powered Financial Engineering: Optimizing Risk Management and Investment Strategies. Asian Accounting and Auditing Advancement, 12(1), 37–45. https://4ajournal.com/article/view/96
  2. Alenljung, B., Andreasson, R., Lowe, R., Billing, E., Lindblom, J. (2018). Conveying Emotions by Touch to the Nao Robot: A User Experience Perspective. Multimodal Technologies and Interaction, 2(4), 82. https://doi.org/10.3390/mti2040082
  3. Alenljung, B., Lindblom, J., Andreasson, R., Ziemke, T. (2017). User Experience in Social Human-Robot Interaction. International Journal of Ambient Computing and Intelligence, 8(2), 12-31. https://doi.org/10.4018/IJACI.2017040102
  4. Boinapalli, N. R. (2020). Digital Transformation in U.S. Industries: AI as a Catalyst for Sustainable Growth. NEXG AI Review of America, 1(1), 70-84.
  5. Deming, C., Pasam, P., Allam, A. R., Mohammed, R., Venkata, S. G. N., & Kothapalli, K. R. V. (2021). Real-Time Scheduling for Energy Optimization: Smart Grid Integration with Renewable Energy. Asia Pacific Journal of Energy and Environment, 8(2), 77-88. https://doi.org/10.18034/apjee.v8i2.762
  6. Guidali, M., Duschau-wicke, A., Broggi, S., Klamroth-marganska, V., Nef, T. (2011). A Robotic System to Train Activities of Daily Living in a Virtual Environment. Medical and Biological Engineering and Computing, 49(10), 1213-23. https://doi.org/10.1007/s11517-011-0809-0
  7. Gummadi, J. C. S., Thompson, C. R., Boinapalli, N. R., Talla, R. R., & Narsina, D. (2021). Robotics and Algorithmic Trading: A New Era in Stock Market Trend Analysis. Global Disclosure of Economics and Business, 10(2), 129-140. https://doi.org/10.18034/gdeb.v10i2.769
  8. Karanam, R. K., Natakam, V. M., Boinapalli, N. R., Sridharlakshmi, N. R. B., Allam, A. R., Gade, P. K., Venkata, S. G. N., Kommineni, H. P., & Manikyala, A. (2018). Neural Networks in Algorithmic Trading for Financial Markets. Asian Accounting and Auditing Advancement, 9(1), 115–126. https://4ajournal.com/article/view/95
  9. Khan, S., Germak, C. (2018). Reframing HRI Design Opportunities for Social Robots: Lessons Learnt from a Service Robotics Case Study Approach Using UX for HRI. Future Internet, 10(10). https://doi.org/10.3390/fi10100101
  10. Kothapalli, S., Manikyala, A., Kommineni, H. P., Venkata, S. G. N., Gade, P. K., Allam, A. R., Sridharlakshmi, N. R. B., Boinapalli, N. R., Onteddu, A. R., & Kundavaram, R. R. (2019). Code Refactoring Strategies for DevOps: Improving Software Maintainability and Scalability. ABC Research Alert, 7(3), 193–204. https://doi.org/10.18034/ra.v7i3.663
  11. Liebergesell, A. (2019). Design in the Age of Autonomous Machines: Modeling Inclusion, Dialogue, and Behavior. International Journal of Technology, Knowledge and Society, 15(1), 27-37. https://doi.org/10.18848/1832-3669/CGP/v15i01/27-37
  12. Navarro-Tuch, S. A., Lopez-Aguilar, A. A., Bustamante-Bello, M. R. Molina, A., Izquierdo-Reyes, J. (2019). Emotional Domotics: A System and Experimental Model Development for UX Implementations. International Journal on Interactive Design and Manufacturing (IJIDeM), 13(4), 1587-1601. https://doi.org/10.1007/s12008-019-00598-z
  13. Rodriguez, M., Mohammed, M. A., Mohammed, R., Pasam, P., Karanam, R. K., Vennapusa, S. C. R., & Boinapalli, N. R. (2019). Oracle EBS and Digital Transformation: Aligning Technology with Business Goals. Technology & Management Review, 4, 49-63. https://upright.pub/index.php/tmr/article/view/151
  14. Rodriguez, M., Sridharlakshmi, N. R. B., Boinapalli, N. R., Allam, A. R., & Devarapu, K. (2020). Applying Convolutional Neural Networks for IoT Image Recognition. International Journal of Reciprocal Symmetry and Theoretical Physics, 7, 32-43. https://upright.pub/index.php/ijrstp/article/view/158
  15. Sun Tung, V. W., Au, N. (2018). Exploring Customer Experiences with Robotics in Hospitality. International Journal of Contemporary Hospitality Management, 30(7), 2680-2697. https://doi.org/10.1108/IJCHM-06-2017-0322
  16. Yoshinobu, A., Eri, S-S., Yasunari, F., Toru, Y. (2016). Model-Based Development with User Model as Practical Process of HCD for Developing Robots. Journal of Robotics and Mechatronics, 28(4), 579-590. https://doi.org/10.20965/jrm.2016.p0579
  17. Yussof, H., Wada, J., Ohka, M. (2010). Analysis of Tactile Slippage Control Algorithm for Robotic Hand Performing Grasp-Move-Twist Motions. International Journal on Smart Sensing and Intelligent Systems, 3(3), 359-375. https://doi.org/10.21307/ijssis-2017-397
  18. Zarour, M., Alharbi, M. (2017). User Experience Framework that Combines Aspects, Dimensions, and Measurement Methods. Cogent Engineering, 4(1). https://doi.org/10.1080/23311916.2017.1421006

Most read articles by the same author(s)